Remove unnecessary creation of LexicalScope in collectDeadVariables.
The created LexicialScope was only used to get isAbstractScope, which
should be false from the creation:
"new LexicalScope(NULL, DIDescriptor(SP), NULL, false);".
We can also remove a DenseMap that holds the created LexicalScopes.
llvm-svn: 193196
Since (as of r190716) Clang no longer emits debug info for C++ friend
declarations (and it seems GCC never has/does, which was the motivation
for the Clang change), there's no actual reachable case for implementing
the part of DWARF 4, Section 7.27 part 5 that pertains to friends.
Leave an assert here so that if/when we do have a client producing
friends and using type units, we can fill in the gap and add appropriate
(unit and feature) tests.
llvm-svn: 193193
The set of circumstances where the writeback register is allowed to be in the
list of registers is rather baroque, but I think this implements them all on
the assembly parsing side.
For disassembly, we still warn about an ARM-mode LDM even if the architecture
revision is < v7 (the required architecture information isn't available). It's
a silly instruction anyway, so hopefully no-one will mind.
rdar://problem/15223374
llvm-svn: 193185
The AMDGPUIndirectAddressing pass was previously responsible for
lowering private loads and stores to indirect addressing instructions.
However, this pass was buggy and way too complicated. The only
advantage it had over the new simplified code was that it saved one
instruction per direct write to private memory. This optimization
likely has a minimal impact on performance, and we may be able
to duplicate it using some other transformation.
For the private address space, we now:
1. Lower private loads/store to Register(Load|Store) instructions
2. Reserve part of the register file as 'private memory'
3. After regalloc lower the Register(Load|Store) instructions to
MOV instructions that use indirect addressing.
llvm-svn: 193179
Includes a test case/FIXME demonstrating a bug/limitation in pointer to
member hashing. To be honest I'm not sure why we don't just always use
summary hashing for referenced types... but perhaps I'm missing
something.
llvm-svn: 193175
Line counts in llvm-cov are read in as 64-bit integers but were being truncated
to 32-bit in collectLineCounts(), which caused overflow for large counts.
This patch fixes all counts to be uint64_t.
Patch by Yuchen Wu!
llvm-svn: 193172
VTList has a long life cycle through the module and getVTList is frequently called. In current getVTList, sequential search over a std::vector is used, this is inefficient in big module.
This patch use FoldingSet to implement hashing mechanism when searching.
Reviewer: Nadav Rotem
Test : Pass unit tests & LNT test suite
llvm-svn: 193150
- Replaced tabs with proper padding
- print() takes two arguments, which are the GCNO and GCDA filenames
- Files are listed at the top of output, appended by line 0
- Stripped strings of trailing \0s
- Removed last two lines of whitespace in output
Patch by Yuchen Wu!
llvm-svn: 193148
We can have a struct type with a single field and the field does not start
with 0. In that case, we should correctly update the offset.
llvm-svn: 193137
collectLineCounts() should only organize the output data. This is done in
anticipation of subsequent changes which will pass in GCNO and GCDA filenames
into the print function where it is printed similar to the gcov output.
Patch by Yuchen Wu!
llvm-svn: 193134
This uses a map, keeping the type DIE numbering separate from the DIEs
themselves - alternatively we could do things the way GCC does if we
want to add an integer to the DIE type to record the numbering there.
llvm-svn: 193105
The test before wasn't successfully testing this
since it was missing the datalayout piece to change
the size of the second address space.
llvm-svn: 193102
the instruction defenitions and ISEL reflect this.
Prior to this patch these instructions took an i32i8imm, and the high bits were
dropped during encoding. This led to incorrect behavior for shifts by
immediates higher than 255. This patch fixes that issue by detecting large
immediate shifts and returning constant zero (for logical shifts) or capping
the shift amount at an encodable value (for arithmetic shifts).
Fixes <rdar://problem/14968098>
llvm-svn: 193096
This allows various variables to be more self-documenting and easier to
debug by being of specific types without overlapping enum values.
Precommit review by Eric Christopher.
llvm-svn: 193091
When a linkonce_odr value that is on the dso list is not unnamed_addr
we can still look to see if anything is actually using its address. If
not, it is safe to hide it.
This patch implements that by moving GlobalStatus to Transforms/Utils
and using it in Internalize.
llvm-svn: 193090
Found while adding type safety to the various DWARF enumerations (form,
attribute, tag, etc) that caused Clang to warn on an incompletely
covered switch. Converting the comment to a default/unreachable
uncovered this case of an unsupported form encoding. Seems we were
skipping fission strings entirely.
llvm-svn: 193089
These instructions are logically related as they allow read/write of MSA control registers.
Currently MSA control registers are emitted by number but hopefully that will change as soon
as GAS starts accepting them by name as that would make the assembly easier to read.
llvm-svn: 193078
A landing pad can be jumped to only by the unwind edge of an invoke
instruction. If we eliminate a partially redundant load in a landing pad, it
will create a basic block that violates this constraint. It then leads to other
problems down the line if it tries to merge that basic block with the landing
pad. Avoid this by not eliminating the load in a landing pad.
PR17621
llvm-svn: 193064
One optimization simplify-cfg performs is the converting of switches to
lookup tables if the switch has > 4 cases. This is done by:
1. Finding the max/min case value and calculating the switch case range.
2. Create a lookup table basic block.
3. Perform a check in the switch's BB to see if the input value is in
the switch's case range. If the input value satisfies said predicate
branch to the lookup table BB, otherwise branch to the switch's default
destination BB using the default value as the result.
The conditional check consists of subtracting the min case value of the
table from any input iN value and then ensuring that said value is
unsigned less than the size of the lookup table represented as an iN
value.
If the lookup table is a covered lookup table, the size of the table will be N
which is 0 as an iN value. Thus the comparison will be an `icmp ult` of an iN
value against 0 which is always false yielding the incorrect result.
This patch fixes this problem by recognizing if we have a covered lookup table
and if we do, unconditionally jumps to the lookup table BB since the covering
property of the lookup table implies no input values could not be handled by
said BB.
rdar://15268442
llvm-svn: 193045
This ensures that the prefix data is treated as part of the function for
the purpose of debug info. This provides a better debugging experience,
among other things by allowing a debug info client to correctly look up
a function in debug info given a function pointer.
llvm-svn: 193042
If the predecessor's being spliced into a landing pad, then we need the PHIs to
come first and the rest of the predecessor's code to come *after* the landing
pad instruction.
llvm-svn: 193035
SCEV currently fails to compute loop counts for nonunit stride
loops. This comes up frequently. It prevents loop optimization and
forces vectorization to insert extra loop checks.
For example:
void foo(int n, int *x) {
for (int i = 0; i < n; i += 3) {
x[i] = i;
x[i+1] = i+1;
x[i+2] = i+2;
}
}
We need to properly handle the case in which limit > INT_MAX-stride. In
the above case: n > INT_MAX-3. In this case the loop counter will step
beyond the limit and overflow at the same time. However, knowing that
signed integer overlow in undefined, we can assume the loop test
behavior is arbitrary after overflow. This obeys both C undefined
behavior rules, and the more strict LLVM poison value rules.
I'm finally fixing this in response to Hal Finkel's persistence.
The most probable reason that we never optimized this before is that
we were being careful to handle case where the developer expected a
side-effect free infinite loop relying on overflow:
for (int i = 0; i < n; i += s) {
++j;
}
return j;
If INT_MAX+1 is a multiple of s and n > INT_MAX-s, then we might
expect an infinite loop. However there are plenty of ways to achieve
this effect without relying on undefined behavior of signed overflow.
llvm-svn: 193015
With this commit, all DIEs created in CompileUnit will be added to parents
inside the same function. Also make getOrCreateTemplateType|Value functions
private.
No functionality change.
llvm-svn: 193002
This is another (final?) stab at making us able to parse our own asm output
on Windows.
Symbols on Windows often contain @'s and ?'s in their names. Our asm parser
didn't like this. ?'s were not allowed, and @'s were intepreted as trying to
reference PLT/GOT/etc.
We can't just add quotes around the bad names, since e.g. for MinGW, we use gas
to assemble, and it doesn't like quotes in some places (notably in .def
directives).
This commit makes us allow ?'s in symbol names, and @'s in symbol names for MS
assembly.
Differential Revision: http://llvm-reviews.chandlerc.com/D1978
llvm-svn: 193000
PR17168 describes a test case that fails when compiling for debug with
fast-isel. Investigation showed that the test was failing because a DBG_VALUE
machine instruction was placed prior to a PHI.
For this problem to occur requires the following:
* Compile for debug
* Compile with fast-isel
* In a block B, fast-isel must partially succeed before punting to DAG-isel
* B must start with a PHI
* The first unhandled node in the DAG must not generate a machine instruction
* A debug value with an order less than that of that first node exists
When all of these circumstances apply, the existing test that an instruction
was not inserted won't fire. Currently it tests whether the block is empty,
or whether the last instruction generated is a phi. When fast-isel has
partially succeeded, the last instruction generated will not be a phi.
Instead, we need to check whether the current insert position is immediately
following a phi. This patch adds that check, and adds the test case from the
PR as a regression test.
llvm-svn: 192976
There are targets that support i128 sized scalars but cannot emit
instructions that modify them directly. The proper thing to do is to
emit a libcall.
This fixes PR17481.
llvm-svn: 192957
gcc diagnoses this:
warning: converting to non-pointer type 'unsigned int' from NULL
Also remove an empty statement.
No change in functionality.
llvm-svn: 192955
This caused the clang-native-mingw32-win7 buildbot to break.
The assembler was complaining about the following lines that were showing up
in the asm for CrashRecoveryContext.cpp:
movl $"__ZL16ExceptionHandlerP19_EXCEPTION_POINTERS@4", 4(%eax)
calll "_AddVectoredExceptionHandler@8"
.def "__ZL16ExceptionHandlerP19_EXCEPTION_POINTERS@4";
"__ZL16ExceptionHandlerP19_EXCEPTION_POINTERS@4":
calll "_RemoveVectoredExceptionHandler@4"
Reverting for now.
llvm-svn: 192940
This commit implements the correct lowering of the
COPY_STRUCT_BYVAL_I32 pseudo-instruction for thumb1 targets.
Previously, the lowering of COPY_STRUCT_BYVAL_I32 generated the
post-increment forms of ldr/ldrh/ldrb instructions. Thumb1 does not
have the post-increment form of these instructions so the generated
assembly contained invalid instructions.
Passing the generated assembly to gcc caused it to complain with an
error like this:
Error: cannot honor width suffix -- `ldrb r3,[r0],#1'
and the integrated assembler would generate an object file with an
invalid instruction encoding.
This commit contains a small test case that demonstrates the problem
with thumb1 targets as well as an expanded test case that more
throughly tests the lowering of byval struct passing for arm,
thumb1, and thumb2 targets.
llvm-svn: 192916
This commit refactors the lowering of the COPY_STRUCT_BYVAL_I32
pseudo-instruction in the ARM backend. We introduce a new helper
class that encapsulates all of the operations needed during the
lowering. The operations are implemented for each subtarget in
different subclasses. Currently only arm and thumb2 subtargets are
supported.
This refactoring was done to easily implement support for thumb1
subtargets. This initial patch does not add support for thumb1, but
is only a refactoring. A follow on patch will implement the support
for thumb1 subtargets.
No intended functionality change.
llvm-svn: 192915
All of the Core API functions have versions which accept explicit context, in
addition to ones which work on global context. This commit adds functions
which accept explicit context to the Target API for consistency.
Patch by Peter Zotov
Differential Revision: http://llvm-reviews.chandlerc.com/D1912
llvm-svn: 192913
class. The instruction class includes the signed saturating doubling
multiply-add long, signed saturating doubling multiply-subtract long, and
the signed saturating doubling multiply long instructions.
llvm-svn: 192908
These were present in a previous version of the MSA spec but are not
present in the published version. There is no hardware that uses these
instructions.
llvm-svn: 192888