Commit Graph

14 Commits

Author SHA1 Message Date
Kyle Butt 5e241b11ed [Codegen] Decrease minimum jump table density.
Minimum density for both optsize and non optsize are now options
-sparse-jump-table-density (default 10) for non optsize functions
-dense-jump-table-density (default 40) for optsize functions, which
matches the current default. This improves several benchmarks at google
at the cost of a small codesize increase. For code compiled with -Os,
the old behavior continues

llvm-svn: 264689
2016-03-29 00:23:41 +00:00
Cong Hou 511298b919 Distribute the weight on the edge from switch to default statement to edges generated in lowering switch.
Currently, when edge weights are assigned to edges that are created when lowering switch statement, the weight on the edge to default statement (let's call it "default weight" here) is not considered. We need to distribute this weight properly. However, without value profiling, we have no idea how to distribute it. In this patch, I applied the heuristic that this weight is evenly distributed to successors.

For example, given a switch statement with cases 1,2,3,5,10,11,20, and every edge from switch to each successor has weight 10. If there is a binary search tree built to test if n < 10, then its two out-edges will have weight 4x10+10/2 = 45 and 3x10 + 10/2 = 35 respectively (currently they are 40 and 30 without considering the default weight). Each distribution (which is 5 here) will be stored in each SwitchWorkListItem for further distribution.

There are some exceptions:

For a jump table header which doesn't have any edge to default statement, we don't distribute the default weight to it.
For a bit test header which covers a contiguous range and hence has no edges to default statement, we don't distribute the default weight to it.
When the branch checks a single value or a contiguous range with no edge to default statement, we don't distribute the default weight to it.
In other cases, the default weight is evenly distributed to successors.

Differential Revision: http://reviews.llvm.org/D12418

llvm-svn: 246522
2015-09-01 01:42:16 +00:00
Hans Wennborg 0867b151c9 Re-commit r235560: Switch lowering: extract jump tables and bit tests before building binary tree (PR22262)
Third time's the charm. The previous commit was reverted as a
reverse for-loop in SelectionDAGBuilder::lowerWorkItem did 'I--'
on an iterator at the beginning of a vector, causing asserts
when using debugging iterators. This commit fixes that.

llvm-svn: 235608
2015-04-23 16:45:24 +00:00
Aaron Ballman 0be238cebd Revert r235560; this commit was causing several failed assertions in Debug builds using MSVC's STL. The iterator is being used outside of its valid range.
llvm-svn: 235597
2015-04-23 13:41:59 +00:00
Hans Wennborg 15823d49b6 Switch lowering: extract jump tables and bit tests before building binary tree (PR22262)
This is a re-commit of r235101, which also fixes the problems with the previous patch:

- Switches with only a default case and non-fallthrough were handled incorrectly

- The previous patch tickled a bug in PowerPC Early-Return Creation which is fixed here.

> This is a major rewrite of the SelectionDAG switch lowering. The previous code
> would lower switches as a binary tre, discovering clusters of cases
> suitable for lowering by jump tables or bit tests as it went along. To increase
> the likelihood of finding jump tables, the binary tree pivot was selected to
> maximize case density on both sides of the pivot.
>
> By not selecting the pivot in the middle, the binary trees would not always
> be balanced, leading to performance problems in the generated code.
>
> This patch rewrites the lowering to search for clusters of cases
> suitable for jump tables or bit tests first, and then builds the binary
> tree around those clusters. This way, the binary tree will always be balanced.
>
> This has the added benefit of decoupling the different aspects of the lowering:
> tree building and jump table or bit tests finding are now easier to tweak
> separately.
>
> For example, this will enable us to balance the tree based on profile info
> in the future.
>
> The algorithm for finding jump tables is quadratic, whereas the previous algorithm
> was O(n log n) for common cases, and quadratic only in the worst-case. This
> doesn't seem to be major problem in practice, e.g. compiling a file consisting
> of a 10k-case switch was only 30% slower, and such large switches should be rare
> in practice. Compiling e.g. gcc.c showed no compile-time difference.  If this
> does turn out to be a problem, we could limit the search space of the algorithm.
>
> This commit also disables all optimizations during switch lowering in -O0.
>
> Differential Revision: http://reviews.llvm.org/D8649

llvm-svn: 235560
2015-04-22 23:14:56 +00:00
Hans Wennborg a9e2057416 Revert the switch lowering change (r235101, r235103, r235106)
Looks like it broke the sanitizer-ppc64-linux1 build. Reverting for now.

llvm-svn: 235108
2015-04-16 15:43:26 +00:00
Hans Wennborg d403664ed8 Switch lowering: extract jump tables and bit tests before building binary tree (PR22262)
This is a major rewrite of the SelectionDAG switch lowering. The previous code
would lower switches as a binary tre, discovering clusters of cases
suitable for lowering by jump tables or bit tests as it went along. To increase
the likelihood of finding jump tables, the binary tree pivot was selected to
maximize case density on both sides of the pivot.

By not selecting the pivot in the middle, the binary trees would not always
be balanced, leading to performance problems in the generated code.

This patch rewrites the lowering to search for clusters of cases
suitable for jump tables or bit tests first, and then builds the binary
tree around those clusters. This way, the binary tree will always be balanced.

This has the added benefit of decoupling the different aspects of the lowering:
tree building and jump table or bit tests finding are now easier to tweak
separately.

For example, this will enable us to balance the tree based on profile info
in the future.

The algorithm for finding jump tables is O(n^2), whereas the previous algorithm
was O(n log n) for common cases, and quadratic only in the worst-case. This
doesn't seem to be major problem in practice, e.g. compiling a file consisting
of a 10k-case switch was only 30% slower, and such large switches should be rare
in practice. Compiling e.g. gcc.c showed no compile-time difference.  If this
does turn out to be a problem, we could limit the search space of the algorithm.

This commit also disables all optimizations during switch lowering in -O0.

Differential Revision: http://reviews.llvm.org/D8649

llvm-svn: 235101
2015-04-16 14:49:23 +00:00
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
Daniel Jasper 6b77455f81 Prevent binary-tree deterioration in sparse switch statements.
This addresses part of llvm.org/PR22262. Specifically, it prevents
considering the densities of sub-ranges that have fewer than
TLI.getMinimumJumpTableEntries() elements. Those densities won't help
jump tables.

This is not a complete solution but works around the most pressing
issue.

Review: http://reviews.llvm.org/D7070
llvm-svn: 226600
2015-01-20 19:43:33 +00:00
Stephen Lin f799e3f944 Convert CodeGen/*/*.ll tests to use the new CHECK-LABEL for easier debugging. No functionality change and all tests pass after conversion.
This was done with the following sed invocation to catch label lines demarking function boundaries:
    sed -i '' "s/^;\( *\)\([A-Z0-9_]*\):\( *\)test\([A-Za-z0-9_-]*\):\( *\)$/;\1\2-LABEL:\3test\4:\5/g" test/CodeGen/*/*.ll
which was written conservatively to avoid false positives rather than false negatives. I scanned through all the changes and everything looks correct.

llvm-svn: 186258
2013-07-13 20:38:47 +00:00
Chandler Carruth 4190b507c5 Flip the new block-placement pass to be on by default.
This is mostly to test the waters. I'd like to get results from FNT
build bots and other bots running on non-x86 platforms.

This feature has been pretty heavily tested over the last few months by
me, and it fixes several of the execution time regressions caused by the
inlining work by preventing inlining decisions from radically impacting
block layout.

I've seen very large improvements in yacr2 and ackermann benchmarks,
along with the expected noise across all of the benchmark suite whenever
code layout changes. I've analyzed all of the regressions and fixed
them, or found them to be impossible to fix. See my email to llvmdev for
more details.

I'd like for this to be in 3.1 as it complements the inliner changes,
but if any failures are showing up or anyone has concerns, it is just
a flag flip and so can be easily turned off.

I'm switching it on tonight to try and get at least one run through
various folks' performance suites in case SPEC or something else has
serious issues with it. I'll watch bots and revert if anything shows up.

llvm-svn: 154816
2012-04-16 13:49:17 +00:00
Benjamin Kramer 15cd5a3f12 Don't emit a bit test if there is only one case the test can yield false. A simple SETNE is sufficient.
llvm-svn: 135126
2011-07-14 01:38:42 +00:00
Evan Cheng ac730dd2d1 Avoid zero extend bit test operands to pointer type if all the masks fit in
the original type of the switch statement key.
rdar://8781238

llvm-svn: 122935
2011-01-06 01:02:44 +00:00
Dan Gohman 0695e09b09 Optimize the "bit test" code path for switch lowering in the
case where the bit mask has exactly one bit.

llvm-svn: 106716
2010-06-24 02:06:24 +00:00