- MIParser: If the successor list is not specified successors will be
added based on basic block operands in the block and possible
fallthrough.
- MIRPrinter: Adds a new `simplify-mir` option, with that option set:
Skip printing of block successor lists in cases where the
parser is guaranteed to reconstruct it. This means we still print the
list if some successor cannot be determined (happens for example for
jump tables), if the successor order changes or branch probabilities
being unequal.
Differential Revision: https://reviews.llvm.org/D31262
llvm-svn: 302289
Summary:
This change adds a new section to the xray-instrumented binary that
stores an index into ranges of the instrumentation map, where sleds
associated with the same function can be accessed as an array. At
runtime, we can get access to this index by function ID offset allowing
for selective patching and unpatching by function ID.
Each entry in this new section (xray_fn_idx) will include two pointers
indicating the start and one past the end of the sleds associated with
the same function. These entries will be 16 bytes long on x86 and
aarch64. On arm, we align to 16 bytes anyway so the runtime has to take
that into consideration.
__{start,stop}_xray_fn_idx will be the symbols that the runtime will
look for when we implement the selective patching/unpatching by function
id APIs. Because XRay synthesizes the function id's in a monotonically
increasing manner at runtime now, implementations (and users) can use
this table to look up the sleds associated with a specific function.
This is useful in implementations that want to do things like:
- Implement coverage mode for functions by patching everything
pre-main, then as functions are encountered, the installed handler
can unpatch the function that's been encountered after recording
that it's been called.
- Do "learning mode", so that the implementation can figure out some
statistical information about function calls by function id for a
time being, and then determine which functions are worth
uninstrumenting at runtime.
- Do "selective instrumentation" where an implementation can
specifically instrument only certain function id's at runtime
(either based on some external data, or through some other
heuristics) instead of patching all the instrumented functions at
runtime.
Reviewers: dblaikie, echristo, chandlerc, javed.absar
Subscribers: pelikan, aemerson, kpw, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D32693
llvm-svn: 302109
Remove "_NC" suffix and semantics from TLSDESC_LD{64,32}_LO12 and
TLSDESC_ADD_LO12 relocations
Rearrange ordering in AArch64.def to follow relocation encoding
Fix name:
R_AARCH64_P32_LD64_GOT_LO12_NC => R_AARCH64_P32_LD32_GOT_LO12_NC
Add support for several "TLS", "TLSGD", and "TLSLD" relocations for
ILP32
Fix return values from isNonILP32reloc
Add implementations for
R_AARCH64_ADR_PREL_PG_HI21_NC, R_AARCH64_P32_LD32_GOT_LO12_NC,
R_AARCH64_P32_TLSIE_LD32_GOTTPREL_LO12_NC,
R_AARCH64_P32_TLSDESC_LD32_LO12, R_AARCH64_LD64_GOT_LO12_NC,
*TLSLD_LDST128_DTPREL_LO12, *TLSLD_LDST128_DTPREL_LO12_NC,
*TLSLE_LDST128_TPREL_LO12, *TLSLE_LDST128_TPREL_LO12_NC
Modify error messages to give name of equivalent relocation in the
ABI not being used, along with better checking for non-existent
requested relocations.
Added assembler support for "pg_hi21_nc"
Relocation definitions added without implementations:
R_AARCH64_P32_TLSDESC_ADR_PREL21, R_AARCH64_P32_TLSGD_ADR_PREL21,
R_AARCH64_P32_TLSGD_ADD_LO12_NC, R_AARCH64_P32_TLSLD_ADR_PREL21,
R_AARCH64_P32_TLSLD_ADR_PAGE21, R_AARCH64_P32_TLSLD_ADD_LO12_NC,
R_AARCH64_P32_TLSLD_LD_PREL19, R_AARCH64_P32_TLSDESC_LD_PREL19,
R_AARCH64_P32_TLSGD_ADR_PAGE21, R_AARCH64_P32_TLS_DTPREL,
R_AARCH64_P32_TLS_DTPMOD, R_AARCH64_P32_TLS_TPREL,
R_AARCH64_P32_TLSDESC
Fix encoding:
R_AARCH64_P32_TLSDESC_ADR_PAGE21
Reviewers: Peter Smith
Patch by: Joel Jones (jjones@cavium.com)
Differential Revision: https://reviews.llvm.org/D32072
llvm-svn: 301980
TLSDESC_ADD_LO12 relocations
Rearrange ordering in AArch64.def to follow relocation encoding
Fix name:
R_AARCH64_P32_LD64_GOT_LO12_NC => R_AARCH64_P32_LD32_GOT_LO12_NC
Add support for several "TLS", "TLSGD", and "TLSLD" relocations for
ILP32
Fix return values from isNonILP32reloc
Add implementations for
R_AARCH64_ADR_PREL_PG_HI21_NC, R_AARCH64_P32_LD32_GOT_LO12_NC,
R_AARCH64_P32_TLSIE_LD32_GOTTPREL_LO12_NC,
R_AARCH64_P32_TLSDESC_LD32_LO12, R_AARCH64_LD64_GOT_LO12_NC,
*TLSLD_LDST128_DTPREL_LO12, *TLSLD_LDST128_DTPREL_LO12_NC,
*TLSLE_LDST128_TPREL_LO12, *TLSLE_LDST128_TPREL_LO12_NC
Modify error messages to give name of equivalent relocation in the
ABI not being used, along with better checking for non-existent
requested relocations.
Added assembler support for "pg_hi21_nc"
Relocation definitions added without implementations:
R_AARCH64_P32_TLSDESC_ADR_PREL21, R_AARCH64_P32_TLSGD_ADR_PREL21,
R_AARCH64_P32_TLSGD_ADD_LO12_NC, R_AARCH64_P32_TLSLD_ADR_PREL21,
R_AARCH64_P32_TLSLD_ADR_PAGE21, R_AARCH64_P32_TLSLD_ADD_LO12_NC,
R_AARCH64_P32_TLSLD_LD_PREL19, R_AARCH64_P32_TLSDESC_LD_PREL19,
R_AARCH64_P32_TLSGD_ADR_PAGE21, R_AARCH64_P32_TLS_DTPREL,
R_AARCH64_P32_TLS_DTPMOD, R_AARCH64_P32_TLS_TPREL,
R_AARCH64_P32_TLSDESC
Fix encoding:
R_AARCH64_P32_TLSDESC_ADR_PAGE21
Reviewers: Peter Smith
Patch by: Joel Jones (jjones@cavium.com)
Differential Revision: https://reviews.llvm.org/D32072
llvm-svn: 301939
Summary:
In some cases LLVM (especially the SLP vectorizer) will create vectors
that are 256 bytes (or larger). Given that this is intentional[0] is
likely to get more common, this patch updates the StackMap binary
format to deal with the spill locations for said vectors.
This change also bumps the stack map version from 2 to 3.
[0]: https://reviews.llvm.org/D32533#738350
Reviewers: reames, kavon, skatkov, javed.absar
Subscribers: mcrosier, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D32629
llvm-svn: 301615
canMutate() was returning true when the operands were all in the same order as
the matched instruction. However, it wasn't checking the operands were actually
on that instruction. This worked when we could only match a single instruction
but the addition of nested instruction matching led to cases where the operands
could be split across multiple instructions. canMutate() now returns false if
operands belong to instructions other than the root of the match.
llvm-svn: 301077
The code assumed that when saving an additional CSR register
(ExtraCSSpill==true) we would have a free register throughout the
function. This was not true if this CSR register is also used to pass
values as in the swiftself case.
rdar://31451816
llvm-svn: 301057
immediate operands.
This commit adds an AArch64 dag-combine that optimizes code generation
for logical instructions taking immediate operands. The optimization
uses demanded bits to change a logical instruction's immediate operand
so that the immediate can be folded into the immediate field of the
instruction.
This recommits r300932 and r300930, which was causing dag-combine to
loop forever. The problem was that optimizeLogicalImm was returning
true even when there was no change to the immediate node (which happened
when the immediate was all zeros or ones), which caused dag-combine to
push and pop the same node to the work list over and over again without
making any progress.
This commit fixes the bug by returning false early in optimizeLogicalImm
if the immediate is all zeros or ones. Also, it changes the code to
compare the immediate with 0 or Mask rather than calling
countPopulation.
rdar://problem/18231627
Differential Revision: https://reviews.llvm.org/D5591
llvm-svn: 301019
It seems that r300930 was creating an infinite loop in dag-combine when
compling the following file:
MultiSource/Benchmarks/MiBench/consumer-typeset/z21.c
llvm-svn: 300940
immediate operands.
This commit adds an AArch64 dag-combine that optimizes code generation
for logical instructions taking immediate operands. The optimization
uses demanded bits to change a logical instruction's immediate operand
so that the immediate can be folded into the immediate field of the
instruction.
This recommits r300913, which broke bots because I didn't fix a call to
ShrinkDemandedConstant in SIISelLowering.cpp after changing the APIs of
TargetLoweringOpt and TargetLowering.
rdar://problem/18231627
Differential Revision: https://reviews.llvm.org/D5591
llvm-svn: 300930
immediate operands.
This commit adds an AArch64 dag-combine that optimizes code generation
for logical instructions taking immediate operands. The optimization
uses demanded bits to change a logical instruction's immediate operand
so that the immediate can be folded into the immediate field of the
instruction.
rdar://problem/18231627
Differential Revision: https://reviews.llvm.org/D5591
llvm-svn: 300913
This fixes PR32471.
As comment 10 on that bug report highlights
(https://bugs.llvm.org//show_bug.cgi?id=32471#c10), there are quite a
few different defendable design tradeoffs that could be made, including
not representing pointers at all in LLT.
I decided to go for representing vector-of-pointer as a concept in LLT,
while keeping the size of the LLT type 64 bits (this is an increase from
48 bits before). My rationale for keeping pointers explicit is that on
some targets probably it's very handy to have the distinction between
pointer and non-pointer (e.g. 68K has a different register bank for
pointers IIRC). If we keep a scalar pointer, it probably is easiest to
also have a vector-of-pointers to keep LLT relatively conceptually clean
and orthogonal, while we don't have a very strong reason to break that
orthogonality. Once we gain more experience on the use of LLT, we can
of course reconsider this direction.
Rejecting vector-of-pointer types in the IRTranslator is also an option
to avoid the crash reported in PR32471, but that is only a very
short-term solution; also needs quite a bit of code tweaks in places,
and is probably fragile. Therefore I didn't consider this the best
option.
llvm-svn: 300664
Remove non-consecutive stores from store merge candidate search as
they cannot be merged and will prevent us from finding subsequent
mergeable store cases.
Reviewers: jyknight, bogner, javed.absar, spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32086
llvm-svn: 300561
This reverts r300535 and r300537.
The newly added tests in test/CodeGen/AArch64/GlobalISel/arm64-fallback.ll
produces slightly different code between LLVM versions being built with different compilers.
E.g., dependent on the compiler LLVM is built with, either one of the following
can be produced:
remark: <unknown>:0:0: unable to legalize instruction: %vreg0<def>(p0) = G_EXTRACT_VECTOR_ELT %vreg1, %vreg2; (in function: vector_of_pointers_extractelement)
remark: <unknown>:0:0: unable to legalize instruction: %vreg2<def>(p0) = G_EXTRACT_VECTOR_ELT %vreg1, %vreg0; (in function: vector_of_pointers_extractelement)
Non-determinism like this is clearly a bad thing, so reverting this until
I can find and fix the root cause of the non-determinism.
llvm-svn: 300538
This fixes PR32471.
As comment 10 on that bug report highlights
(https://bugs.llvm.org//show_bug.cgi?id=32471#c10), there are quite a
few different defendable design tradeoffs that could be made, including
not representing pointers at all in LLT.
I decided to go for representing vector-of-pointer as a concept in LLT,
while keeping the size of the LLT type 64 bits (this is an increase from
48 bits before). My rationale for keeping pointers explicit is that on
some targets probably it's very handy to have the distinction between
pointer and non-pointer (e.g. 68K has a different register bank for
pointers IIRC). If we keep a scalar pointer, it probably is easiest to
also have a vector-of-pointers to keep LLT relatively conceptually clean
and orthogonal, while we don't have a very strong reason to break that
orthogonality. Once we gain more experience on the use of LLT, we can
of course reconsider this direction.
Rejecting vector-of-pointer types in the IRTranslator is also an option
to avoid the crash reported in PR32471, but that is only a very
short-term solution; also needs quite a bit of code tweaks in places,
and is probably fragile. Therefore I didn't consider this the best
option.
llvm-svn: 300535
It's basically a terrible idea anyway but objc_msgSend gets emitted like that.
We can decide on a better way to deal with it in the unlikely event that anyone
actually uses it.
llvm-svn: 300474
It's almost certainly not a good idea to actually use it in most cases (there's
a pretty large code size overhead on AArch64), but we can't do those
experiments until it's supported.
llvm-svn: 300462
This further improves Ahmed's change in rL299482. See the new comment for the
rationale.
The patch recovers most of the regression for bzip2 after D31965. We're down
to +2.68% from +6.97%.
Differential Revision: https://reviews.llvm.org/D32028
llvm-svn: 300276
Summary: Legalize only if the type is marked as Legal or Custom. If not, return Unsupported as LegalizerHelper is not able to handle non-power-of-2 types right now.
Reviewers: qcolombet, aditya_nandakumar, dsanders, t.p.northover, kristof.beyls, javed.absar, ab
Reviewed By: kristof.beyls, ab
Subscribers: dberris, rovka, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D31711
llvm-svn: 299929
Qin may be large, and Succ may be more frequent than BB. Take these both into
account when deciding if tail-duplication is profitable.
llvm-svn: 299891
The original instruction might get legalized and erased and expanded
into intermediate instructions and the intermediate instructions might
fail legalization. This end up in reporting GISelFailure on the erased
instruction.
Instead report GISelFailure on the intermediate instruction which failed
legalization.
Reviewed by: ab
llvm-svn: 299802
When using -ffixed-x18, the x18 (or w18) register can safely be used
with the "global register variable" GCC extension, but the backend
fails to recognize it.
Patch by Roland McGrath.
Differential Revision: https://reviews.llvm.org/D31793
llvm-svn: 299799
The new codepath has been in the tree for years, and there isn't any
reason to use two codepaths here.
Differential Revision: https://reviews.llvm.org/D30596
llvm-svn: 299723
This is a follow-on to r299096 which added support for fmadd.
Subtract does not have the case where with two multiply operands we commute in
order to fuse with the multiply with the fewer uses.
llvm-svn: 299572
This improves upon r246462: that prevented FMOVs from being emitted
for the cross-class INSERT_SUBREGs by disabling the formation of
INSERT_SUBREGs of LOAD. But the ld1.s that we started selecting
caused us to introduce partial dependencies on the vector register.
Avoid that by using SCALAR_TO_VECTOR: it's a first-class citizen that
is folded away by many patterns, including the scalar LDRS that we
want in this case.
Credit goes to Adam for finding the issue!
llvm-svn: 299482
This mode is just like -mcmodel=small except that it moves the
thread pointer from TPIDR_EL0 to TPIDR_EL1.
Patch by Roland McGrath.
Differential Revision: https://reviews.llvm.org/D31624
llvm-svn: 299462
Summary:
Lift the restrictions that prevented the tree walking introduced in the
previous change and add support for patterns like:
(G_ADD (G_MUL (G_SEXT $src1), (G_SEXT $src2)), $src3) -> SMADDWrrr $dst, $src1, $src2, $src3
Also adds support for G_SEXT and G_ZEXT to support these cases.
One particular aspect of this that I should draw attention to is that I've
tried to be overly conservative in determining the safety of matches that
involve non-adjacent instructions and multiple basic blocks. This is intended
to be used as a cheap initial check and we may add a more expensive check in
the future. The current rules are:
* Reject if any instruction may load/store (we'd need to check for intervening
memory operations.
* Reject if any instruction has implicit operands.
* Reject if any instruction has unmodelled side-effects.
See isObviouslySafeToFold().
Reviewers: t.p.northover, javed.absar, qcolombet, aditya_nandakumar, ab, rovka
Reviewed By: ab
Subscribers: igorb, dberris, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D30539
llvm-svn: 299430
Summary:
Move the aarch64-type-promotion pass within the existing type promotion framework in CGP.
This change also support forking sexts when a new sext is required for promotion.
Note that change is based on D27853 and I am submitting this out early to provide a better idea on D27853.
Reviewers: jmolloy, mcrosier, javed.absar, qcolombet
Reviewed By: qcolombet
Subscribers: llvm-commits, aemerson, rengolin, mcrosier
Differential Revision: https://reviews.llvm.org/D28680
llvm-svn: 299379
REG_SEQUENCE falls into the same category as COPY for operands mapping:
- They don't have MCInstrDesc with register constraints
- The input variable could use whatever register classes
- It is possible to have register class already assigned to the operands
In particular, given REG_SEQUENCE are always target specific because of
the subreg indices. Those indices must apply to the register class of
the definition of the REG_SEQUENCE and therefore, the target must set a
register class to that definition. As a result, the generic code can
always use that register class to derive a valid mapping for a
REG_SEQUENCE.
llvm-svn: 299285
Summary:
This feature enables folding of logical shift operations of up to 3 places into addressing mode on Kryo and Falkor that have a fastpath LSL.
Reviewers: mcrosier, rengolin, t.p.northover
Subscribers: junbuml, gberry, llvm-commits, aemerson
Differential Revision: https://reviews.llvm.org/D31113
llvm-svn: 299240
Now alternatively to the TargetOption.AllowFPOpFusion global flag, FMUL->FADD
can also use the per operation FMF to allow fusion.
The idea here is not to port everything to the new scheme (e.g. fused
multiply-and-sub will be ported later) but that this work all the way from
clang.
The transformation is conditionalized on *both* the FADD and the FMUL having
the FMF contract flag.
Differential Revision: https://reviews.llvm.org/D31169
llvm-svn: 299096
In the long-term, we want to replace statistics with something
finer-grained that lets us gather per-function data.
Remarks are that replacement.
Create an ORE instance in SelectionDAGISel, and pass it to
SelectionDAG.
SelectionDAG was used so that we can emit remarks from all
SelectionDAG-related code, including TargetLowering and DAGCombiner.
This isn't used in the current patch but Adam tells me he's interested
for the fp-contract combines.
Use the ORE instance to emit FastISel failures as remarks (instead of
the mix of dbgs() dumps and statistics that we currently have).
Eventually, we want to have an API that tells us whether remarks are
enabled (http://llvm.org/PR32352) so that we don't emit expensive
remarks (in this case, dumping IR) when it's not needed. For now, use
'isEnabled' as a crude replacement.
This does mean that the replacement for '-fast-isel-verbose' is now
'-pass-remarks-missed=isel'. Additionally, clang users also need to
enable remark diagnostics, using '-Rpass-missed=isel'.
This also removes '-fast-isel-verbose2': there are no static statistics
that we want to only enable in asserts builds, so we can always use
the remarks regardless of the build type.
Differential Revision: https://reviews.llvm.org/D31405
llvm-svn: 299093
We're not to the point of supporting the load/store patterns yet
(because they extensively use PatFrags).
But in the meantime, we can implement some of the simplest addressing
modes.
llvm-svn: 298863
CBZ/CBNZ represent a substantial portion of all conditional branches.
Look through G_ICMP to select them.
We can't use tablegen yet because the existing patterns match an
AArch64ISD node.
llvm-svn: 298856
Among other things, this allows Machine LICM to hoist a costly 'mrs'
instruction from within a loop.
Differential Revision: http://reviews.llvm.org/D31151
llvm-svn: 298851
This patch changes the behavior of IRTranslating intrinsics where we
now create VREG + G_CONSTANT for ConstantInt values. We already do this
for FloatingPoint values. This makes it easier for the backends to
select code and it won't have to de-duplicate creation+selection of
constants.
Reviewed by: ab
llvm-svn: 298473