This patch fixes the condition for emitting atomic update using
`atomicrmw` instruction or compare-exchange loop.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D121546
This patch improves the representation size of individual
`IntegerRelation`s by calling the function
`IntegerRelation::removeRedundantConstraints`. While this is only a
slight optimization in the current version, it will be necessary for
patches to come.
Reviewed By: arjunp
Differential Revision: https://reviews.llvm.org/D121989
This option tells CMake to add current source and binary
directories to the include path for each directory[1].
Required include directories from build tree (for generated
files) were previously added in `mlir_tablegen` but this was
changed in 03078ec20b .
These are still needed, however, for out-of-tree builds
that don't build as part of LLVM (via LLVM_ENABLE_PROJECTS).
Building as part of LLVM works regardless, AFAICT,
because LLVM sets this option and so the MLIR build inherits it.
FWIW, various other (in-tree) LLVM projects set this as well.
And of course this fixes the out-of-tree
mlir-by-itself build scenario I'm using.
[1] https://cmake.org/cmake/help/latest/variable/CMAKE_INCLUDE_CURRENT_DIR.html
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D122088
This support has never really worked well, and is incredibly clunky to
use (it effectively creates two argument APIs), and clunky to generate (it isn't
clear how we should actually expose this from PDL frontends). Treating these
as just attribute arguments is much much cleaner in every aspect of the stack.
If we need to optimize lots of constant parameters, it would be better to
investigate internal representation optimizations (e.g. batch attribute creation),
that do not affect the user (we want a clean external API).
Differential Revision: https://reviews.llvm.org/D121569
This commit adds signature support to the language server,
and initially supports providing help for: operation operands and results,
and constraint/rewrite calls.
Differential Revision: https://reviews.llvm.org/D121545
This commit adds code completion support to the language server,
and initially supports providing completions for: Member access,
attributes/constraint/dialect/operation names, and pattern metadata.
Differential Revision: https://reviews.llvm.org/D121544
This adds support for documenting the top-level "symbols",
e.g. patterns, constraints, rewrites, etc., within a PDLL file.
Differential Revision: https://reviews.llvm.org/D121543
This adds support for providing information when hovering over
operation names, variables, patters, constraints, and rewrites.
Differential Revision: https://reviews.llvm.org/D121542
This commits adds a basic language server for PDLL to enable providing
language features in IDEs such as VSCode. This initial commit only
adds support for tracking definitions, references, and diagnostics, but
followup commits will build upon this to provide more significant behavior.
In addition to the server, this commit also updates mlir-vscode to support
the PDLL language and invoke the server.
Differential Revision: https://reviews.llvm.org/D121541
This patch slightly updates the behavior of scf.if->select to
place any hoisted select statements prior to the remaining scf.if body.
This allows better composition with other canonicalization passes, such as
scf.if nested merging.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D122027
ExpandShapeOp builder cannot infer the result type since it doesn't know
how the dimension needs to be split. Remove this builder so that it
doesn't get used accidently. Also remove one potential path using it in
generic fusion.
Differential Revision: https://reviews.llvm.org/D122019
If a stack allocation is within a nested allocation scope
don't count that as an allocation of the outer allocation scope
that would prevent inlining.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D121981
This patch extends the existing combine nested if
combination canonicalization to also handle ifs which
yield values
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D121923
Previously, the canonicalizer to create ifs from selects would only work
if the if did not have a body other than yielding. This patch upgrade the functionality
to be able to create selects from any if result whose operands are not defined
within the body.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D121943
This patch refactors the current coalesce implementation. It introduces
the `SetCoalescer`, a class in which all coalescing functionality lives.
The main advantage over the old design is the fact that the vectors of
constraints do not have to be passed around, but are implemented as
private fields of the SetCoalescer. This will become especially
important once more inequality types are introduced.
Reviewed By: arjunp
Differential Revision: https://reviews.llvm.org/D121364
This reverts commit dad80e9710.
The build is broken with some configurations (gcc-5 and gcc-8):
mlir/lib/Analysis/Presburger/PresburgerRelation.cpp:402:32: error: qualified name does not name a class before '{' token
class presburger::SetCoalescer {
This patch refactors the current coalesce implementation. It introduces
the `SetCoalescer`, a class in which all coalescing functionality lives.
The main advantage over the old design is the fact that the vectors of
constraints do not have to be passed around, but are implemented as
private fields of the SetCoalescer. This will become especially
important once more inequality types are introduced.
Reviewed By: arjunp
Differential Revision: https://reviews.llvm.org/D121364
Fold affine.load ops on global constant memrefs when indices are all
constant.
Reviewed By: ayzhuang
Differential Revision: https://reviews.llvm.org/D120612
When the sparse_tensor dialect lowers linalg.generic,
it makes inferences about how the operations should
affect the looping logic. For example, multiplication
is an intersection while addition is a union of two
sparse tensors.
The new binary and unary op separate the looping logic
from the computation by nesting the computation code
inside a block which is merged at the appropriate level
in the lowered looping code.
The binary op can have custom computation code for the
overlap, left, and right sparse overlap regions. The
unary op can have custom computation code for the
present and absent values.
Reviewed by: aartbik
Differential Revision: https://reviews.llvm.org/D121018
Fold away empty loops that iterate at least once and only return
values defined outside of the loop.
Reviewed By: bondhugula, dcaballe
Differential Revision: https://reviews.llvm.org/D121148
This allows for sharing the implementation of key components across multiple
MLIR language servers. These will be used in a followup to help implement
a PDLL language server.
Differential Revision: https://reviews.llvm.org/D121540
This commit adds detailed documentation for PDLL, its language design, and
captures a bit of the rationale. This document captures everything in-tree at present,
and is intended to be an all encompassing manual for interacting with and understanding
PDLL.
Differential Revision: https://reviews.llvm.org/D119903
The current dialect registry allows for attaching delayed interfaces, that are added to attrs/dialects/ops/etc.
when the owning dialect gets loaded. This is clunky for quite a few reasons, e.g. each interface type has a
separate tracking structure, and is also quite limiting. This commit refactors this delayed mutation of
dialect constructs into a more general DialectExtension mechanism. This mechanism is essentially a registration
callback that is invoked when a set of dialects have been loaded. This allows for attaching interfaces directly
on the loaded constructs, and also allows for loading new dependent dialects. The latter of which is
extremely useful as it will now enable dependent dialects to only apply in the contexts in which they
are necessary. For example, a dialect dependency can now be conditional on if a user actually needs the
interface that relies on it.
Differential Revision: https://reviews.llvm.org/D120367
This PR exposes the region-based isTopLevelValue,
which is useful for other code that performs Affine transformations,
but is not within AffineOps.cpp
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D121877
The getAffineScope function is currently internal
to AffineOps.cpp. However, as the comment on the function
itself notes, this is useful in a variety of other places
externally. This PR allows other files to use the function.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D121827
This removes any potential confusion with the `getType` accessors
which correspond to SSA results of an operation, and makes it
clear what the intent is (i.e. to represent the type of the function).
Differential Revision: https://reviews.llvm.org/D121762
This commit moves FuncOp out of the builtin dialect, and into the Func
dialect. This move has been planned in some capacity from the moment
we made FuncOp an operation (years ago). This commit handles the
functional aspects of the move, but various aspects are left untouched
to ease migration: func::FuncOp is re-exported into mlir to reduce
the actual API churn, the assembly format still accepts the unqualified
`func`. These temporary measures will remain for a little while to
simplify migration before being removed.
Differential Revision: https://reviews.llvm.org/D121266
Add basic C API for the ControlFlow dialect. Follows the format of the other dialects.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D121867
The current decision of when to run the verifier is running on the
assumption that nested passes can't affect the validity of the parent
operation, which isn't true. Parent operations may attach any number
of constraints on nested operations, which may not necessarily be
captured (or shouldn't be captured) at a smaller granularity.
This commit rectifies this by properly running the verifier after an
OpToOpAdaptor pass. To avoid an explosive increase in compile time,
we only run verification on the parent operation itself. To do this, a
flag to mlir::verify is added to avoid recursive verification if it isn't
desired.
Fixes#54288
Differential Revision: https://reviews.llvm.org/D121836
dense<...> expects ... to be a tensor-literal.
Define this in the grammar in BuiltinAttributes.td,
and reflect this in the reference grammar written in
AttributeParser.cpp.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D121048
This removes a restriction wrt. scf.for loops during One-Shot Bufferization. Such IR was previously rejected. It is still rejected by default because the bufferized IR could be slow. But such IR can now be bufferized with `allow-return-allocs`.
Differential Revision: https://reviews.llvm.org/D121529
New buffer allocations can now be returned/yielded from blocks with `allow-return-allocs`. One-Shot Bufferize deallocates all buffers at the end of the block. If this is not possible (because the buffer escapes the block), this is now done by the existing BufferDeallocation pass.
Differential Revision: https://reviews.llvm.org/D121527
* Implement RegionBranchOpInterface: The op has a region, but it is conceptually not entered. The region just describes the semantics of the (monolithic) op.
* Linalg structured ops do not allocate memory.
Differential Revision: https://reviews.llvm.org/D121798