The 0xf3 prefix has been defined as wbnoinvd on Icelake Server. So
the prefix isn't ignored by the CPU. AMD documentation suggests that
wbnoinvd is treated as wbinvd on older processors. Intel documentation
is not clear. Perhaps 0xf2 and 0x66 are treated the same, but its
not documented.
This patch changes TB to PS in the td file so 0xf2 and 0x66 will
be treated as errors. This matches versions of objdump after
wbnoinvd was added.
We have been producing R_X86_64_REX_GOTPCRELX (MOV64rm/TEST64rm/...) and
R_X86_64_GOTPCRELX for CALL64m/JMP64m without the REX prefix since 2016 (to be
consistent with GNU as), but not for MOV32rm/TEST32rm/...
Implementation of instructions table.get, table.set, table.grow,
table.size, table.fill, table.copy.
Missing instructions are table.init and elem.drop as they deal with
element sections which are not yet implemented.
Added more tests to tables.s
Differential Revision: https://reviews.llvm.org/D89797
GFX10 enables third addressing mode for flat scratch instructions,
an ST mode. In that mode both register operands are omitted and
only swizzled offset is used in addition to flat_scratch base.
Differential Revision: https://reviews.llvm.org/D89501
- Use file_check -LABEL markers to prevent false positives being
reported due to messages from different tests causing success to be
reported.
- Add checks for all the run commands for more robust testing.
- Add checks for the absence of errors.
- Name and order tests more sensibly.
Differential Revision: https://reviews.llvm.org/D89635
Add VBRD/VMV vector instructions. In order to do that, also support
VM512 registers and RV instruction format in MC layer. Also add
regression tests for new instructions.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D89641
Add LSV/LVS/LVM/SVM vector instructions and regression tests.
Also update AsmParser to support new format of operands.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D89499
Prototype the newly proposed load_lane instructions, as specified in
https://github.com/WebAssembly/simd/pull/350. Since these instructions are not
available to origin trial users on Chrome stable, make them opt-in by only
selecting them from intrinsics rather than normal ISel patterns. Since we only
need rough prototypes to measure performance right now, this commit does not
implement all the load and store patterns that would be necessary to make full
use of the offset immediate. However, the full suite of offset tests is included
to make it easy to track improvements in the future.
Since these are the first instructions to have a memarg immediate as well as an
additional immediate, the disassembler needed some additional hacks to be able
to parse them correctly. Making that code more principled is left as future
work.
Differential Revision: https://reviews.llvm.org/D89366
This instruction was introduced in GFX10.3, reusing the opcode of
v_mac_legacy_f32 from GFX10.1.
Differential Revision: https://reviews.llvm.org/D89247
Adds more testing in basic-assembly.s and a new test tables.s.
Adds support to yaml reading and writing of tables as well.
Differential Revision: https://reviews.llvm.org/D88815
A dynamic linker with lazy binding support may need to handle variant
PCS function symbols specially, so an ELF symbol table marking
STO_AARCH64_VARIANT_PCS [1] was added to address this.
Function symbols that follow the vector PCS are marked via the
.variant_pcs assembler directive, which takes a single parameter
specifying the symbol name and sets the STO_AARCH64_VARIANT_PCS st_other
flag in the object file.
[1] https://github.com/ARM-software/abi-aa/blob/master/aaelf64/aaelf64.rst#st-other-values
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D89138
This patch lets the bb_addr_map (renamed to __llvm_bb_addr_map) section use a special section type (SHT_LLVM_BB_ADDR_MAP) instead of SHT_PROGBITS. This would help parsers, dumpers and other tools to use the sh_type ELF field to identify this section rather than relying on string comparison on the section name.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D88199
Previously we wrote multi-byte values out as-is from host memory. Use
the `emitIntN` helpers in `MCStreamer` to produce a valid descriptor
irrespective of the host endianness.
Reviewed By: arsenm, rochauha
Differential Revision: https://reviews.llvm.org/D88858
PR47632
This allows MC to match `data32 ...` as one instruction instead of two (data32 without insn + insn).
The compatibility with GNU as improves: `data32 ljmp` will be matched as ljmpl.
`data32 lgdt 4(%eax)` will be matched as `lgdtl` (prefixes: 0x67 0x66, instead
of 0x66 0x67).
GNU as supports many other `data32 *w` as `*l`. We currently just hard code
`data32 callw` and `data32 ljmpw`. Generalizing the suffix replacement is
tricky and requires a think about the "bwlq" appending suffix rules in MatchAndEmitATTInstruction.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D88772
This patch makes the parser
- reject higher vector registers (>=16) in operands where they should not
be accepted.
- accept higher integers (>=16) in vector register operands.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D88888
Register context information was already being passed into the DWARFDebugFrame code that dumps unwind information but it wasn't being used. This change adds the ability to dump registers names of a valid MC register context was passed in and if it knows about the register. Updated the tests to use the newly returned register names.
Differential Revision: https://reviews.llvm.org/D88767
Support VRI, VRR, VRS, VRV, VRX, VSI instruction formats with the .insn
directive.
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D88357
Implement vmsge{u}.vx pseudo instruction.
According to RISC-V V specification, there are different scenarios for this
pseudo instruction. I list them below.
unmasked va >= x
pseudoinstruction: vmsge{u}.vx vd, va, x
expansion: vmslt{u}.vx vd, va, x; vmnand.mm vd, vd, vd
masked va >= x, vd != v0
pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t
expansion: vmslt{u}.vx vd, va, x, v0.t; vmxor.mm vd, vd, v0
masked va >= x, vd == v0
pseudoinstruction: vmsge{u}.vx vd, va, x, v0.t, vt
expansion: vmslt{u}.vx vt, va, x; vmandnot.mm vd, vd, vt
Use pseudo instruction to model vmsge{u}.vx. The pseudo instruction will convert
to different expansion according to the condition.
Differential Revision: https://reviews.llvm.org/D84732
This patch adds outer product instructions for MMA, including related infrastructure, and their tests.
Depends on D84968.
Reviewed By: #powerpc, bsaleil, amyk
Differential Revision: https://reviews.llvm.org/D88043
Key Locker provides a mechanism to encrypt and decrypt data with an AES key without having access
to the raw key value by converting AES keys into “handles”. These handles can be used to perform the
same encryption and decryption operations as the original AES keys, but they only work on the current
system and only until they are revoked. If software revokes Key Locker handles (e.g., on a reboot),
then any previous handles can no longer be used.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D88398
Avoid introducing unnecessary indirection for weak-external references.
We only need to introduce ".weak.<SYMBOL>.default" when referencing a
symbol that is defined, but not external.
Reviewed By: mstorsjo
Differential Revision: https://reviews.llvm.org/D88305
This patch adds the xxmfacc, xxmtacc and xxsetaccz instructions to manipulate
accumulator registers. It also adds the ACC register class definition for the
accumulator registers.
Differential Revision: https://reviews.llvm.org/D84847
Used by kexec-tools (PR46942)
In GNU as, tc-i386.c:output_jump uses 4-byte immediate if a data32 prefix is present.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D88137
This patch is the initial support for the Local Dynamic Thread Local Storage
model to produce code sequence and relocation correct to the ABI for the model
when using PC relative memory operations.
Differential Revision: https://reviews.llvm.org/D87721
In practice, this only gives modest savings (for a 6.5 MB DLL with
230 KB xdata, the xdata sections shrinks by around 2.5 KB); to
gain more, the frame lowering would need to be tweaked to more often
generate frame layouts that match the canonical layouts that can
be written in packed form.
Differential Revision: https://reviews.llvm.org/D87371
The subject test was not actually running. This patch adds the
relevant suffix to the list of lit case filename extensions for the
enclosing directory.
Minor adjustments are also made to deal with bit rot.
Reviewed By: daltenty
Differential Revision: https://reviews.llvm.org/D87122
For relative symbols, add its offset when computing relocation value.
Also, warn on unsupported absolute symbols.
Differential Revision: https://reviews.llvm.org/D87407
This patch adds support for the lxvp, lxvpx, plxvp, stxvp, stxvpx and pstxvp
instructions in the PowerPC backend. These instructions allow loading and
storing VSX register pairs. This patch also adds the VSRp register class
definition needed for these instructions.
Differential Revision: https://reviews.llvm.org/D84359
This patch adds the instruction definitions and assembly/disassembly tests for
the set boolean condition instructions. This also includes the negative, and
reverse variants of the instruction.
Differential Revision: https://reviews.llvm.org/D86252
This patch is the initial support for the Local Exec Thread Local
Storage model to produce code sequence and relocations correct
to the ABI for the model when using PC relative memory operations.
Patch by: Kamau Bridgeman
Differential Revision: https://reviews.llvm.org/D83404
This adds and optional ", immutable" to the end of a `.globaltype`
declaration. I would have prefered to match the `.wat` syntax
where immutable is the default and `mut` is the signifier for
mutable globals. Sadly changing the default would break backwards
compat with existing assembly in the wild so I think its best
to stick with this approach.
Differential Revision: https://reviews.llvm.org/D87515
This gives a pretty substantial size reduction; for a 6.5 MB
DLL with 300 KB .xdata, the .xdata shrinks by 66 KB.
Differential Revision: https://reviews.llvm.org/D87369
Convert 2-byte opcodes to equivalent 1-byte ones.
Adjust the existing exhaustive testcase to avoid being altered by
the simplification rules (to keep that test exercising all individual
opcodes).
Fix the assembler parser limits for register pairs; for .seh_save_regp
and .seh_save_regp_x, we can allow up to x29, for a x29+x30 pair
(which gets remapped to the UOP_SaveFPLR(X) opcodes), for .seh_save_fregp
and .seh_save_fregpx, allow up to d14+d15.
Not creating .seh_save_next for float register pairs, as the
actual unwinder implementation in current versions of Windows is buggy
for that case.
This gives a minimal but measurable size reduction. (For a 6.5 MB
DLL with 300 KB .xdata, the .xdata shrinks by 48 bytes. The opcode
sequences are padded to a 4 byte boundary, so very small improvements
might not end up mattering directly.)
Differential Revision: https://reviews.llvm.org/D87367
I recently came across a MachO with multiple sections of the same name but
different segments. We should emit the segment name alongside the section name
for MachO's.
Differential Revision: https://reviews.llvm.org/D87119
Add support in llvm-readobj for displaying them and support in the
asm parsser, AArch64TargetStreamer and MCWin64EH for emitting them.
The directives for the remaining basic opcodes have names that
match the opcode in the documentation.
The directives for custom stack cases, that are named
MSFT_OP_TRAP_FRAME, MSFT_OP_MACHINE_FRAME, MSFT_OP_CONTEXT
and MSFT_OP_CLEAR_UNWOUND_TO_CALL, are given matching assembler
directive names that fit into the rest of the opcode naming;
.seh_trap_frame, .seh_context, .seh_clear_unwound_to_call
The opcode MSFT_OP_MACHINE_FRAME is mapped to the existing
opecode enum UOP_PushMachFrame that is used on x86_64, and also
uses the corresponding existing x86_64 directive name
.seh_pushframe.
Differential Revision: https://reviews.llvm.org/D86889
Summary of changes:
- Changed parser to eliminate generation of excessive error messages;
- Corrected lit tests to match all expected error messages;
- Corrected lit tests to guard against unwanted extra messages (added option "--implicit-check-not=error:");
- Added missing checks and fixed some typos in tests.
See bug 46907: https://bugs.llvm.org/show_bug.cgi?id=46907
Reviewers: arsenm, rampitec
Differential Revision: https://reviews.llvm.org/D86940
This patch adds the td instruction definitions of the xvcvspbf16 and xvcvbf16spn
instructions, along with their respective MC tests.
Differential Revision: https://reviews.llvm.org/D86794
This ensures that you get the same output regardless if generating
code directly to an object file or if generating assembly and
assembling that.
Add implementations of the EmitARM64WinCFI*() methods in
AArch64TargetAsmStreamer, and fill in one blank in MCAsmStreamer.
Add corresponding directive handlers in AArch64AsmParser and
COFFAsmParser.
Some SEH directive names have been picked to match the prior art
for SEH assembly directives for x86_64, e.g. the spelling of
".seh_startepilogue" matching the preexisting ".seh_endprologue".
For the directives for saving registers, the exact spelling
from the arm64 documentation is picked, e.g. ".seh_save_reg" (to follow
that naming for all the other ones, e.g. ".seh_save_fregp_x"), while
the corresponding one for x86_64 is plain ".seh_savereg" without the
second underscore.
Directives in the epilogues have the same names as in prologues,
e.g. .seh_savereg, even though the registers are restored, not
saved, at that point.
Differential Revision: https://reviews.llvm.org/D86529
This can happen e.g. for code that declare .seh_proc/.seh_endproc
in assembly, or for code that use .seh_handlerdata (which triggers
the unwind info to be emitted before the end of the function).
The TextSection field must be made non-const to be able to use it
with Streamer.SwitchSection().
Differential Revision: https://reviews.llvm.org/D86528
If there's no unwinding opcodes, omit writing the xdata/pdata records.
Previously, this generated truncated xdata records, and llvm-readobj
would error out when trying to print them.
If writing of an xdata record is forced via the .seh_handlerdata
directive, skip it if there's no info to make a sensible unwind
info structure out of, and clearly error out if such info appeared
later in the process.
Differential Revision: https://reviews.llvm.org/D86527
Implements the assemble and disassemble support of RISCV Vector
extension zvamo instructions, base on the 0.9 spec version.
Reviewed by HsiangKai
Differential Revision: https://reviews.llvm.org/D85069
The version of `st1d` that operates with vector plus immediate
addressing mode uses the alias `st1d { <Zn>.d }, <Pg>, [<Za>.d]` for
rendering `st1d { <Zn>.d }, <Pg>, [<Za>.d, #0]`. The disassembler was
generating `<Zn>.s` instead of `<Zn>.d>`.
Differential Revision: https://reviews.llvm.org/D86633
This is an older syntax than the {disp32} and {disp8} pseudo
prefixes that were added a few weeks ago. We can reuse most of
the support for that to support .d32 and .d8 as well.
Update the comment stating the aim of the test - this is currently
only checking that these assembler directives doesn't cause the
assembler to fail, but the results of the testcase aren't particularly
correct yet.
Remove bits of the testcase that are even less likely to be found in
the wild (the .seh_startchained/.seh_endchained block), where the
testcase currently doesn't really generate anything interesting
anyway.
Differential Revision: https://reviews.llvm.org/D86524
This patch is the initial support for the Intial Exec Thread Local
Local Storage model to produce code sequence and relocations correct
to the ABI for the model when using PC relative memory operations.
Reviewed By: stefanp
Differential Revision: https://reviews.llvm.org/D81947
This patch is the initial support for the General Dynamic Thread Local
Local Storage model to produce code sequence and relocations correct
to the ABI for the model when using PC relative memory operations.
Patch by: NeHuang
Reviewed By: stefanp
Differential Revision: https://reviews.llvm.org/D82315
This implements the assemble and disassemble support of RISCV Vector
extension Zvlsseg instructions, base on the 0.9 spec version.
Reviewed by HsiangKai
Differential Revision: https://reviews.llvm.org/D84416
The RISC-V Privileged Specification 1.11 defines `mcountinhibit`, which
has the same numeric CSR value as `mucounteren` from 1.09.1. This patch
enables the use of the old `mucounteren` name.
Patch by Yuichi Sugiyama.
Reviewed By: lenary, jrtc27, pzheng
Differential Revision: https://reviews.llvm.org/D85067
The VGPR component is a 32-bit offset, not 64-bits.
I'm not sure what the correct syntax is for this. This maintains the
vaddr position and leaves saddr in the end "off" position. This is
particularly terrible for stores, since the operand order is now <vgpr
offset>, <data>, <sgpr base>, splitting the pointer operands. I
suppose this is a logical consequence from the mistake of not putting
the data operand first. I'm not sure what sp3 does.
Rather than just saying that some feature is missing, report the exact
features to make the error message more useful and actionable.
Differential Revision: https://reviews.llvm.org/D85795
This reverts commit b497665d98.
Spent some time trying to reproduce this locally, reverting in a
desparate attempt to fix the sanitizer buildbot:
- http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux/builds/28828
I don't know exactly why or how this patch breaks the bots, but it seems
pretty concrete that it's the culprit.
This patch adds the instruction definitions and assembly/disassembly tests for
the following set of instructions:
Vector Extract [byte | half | word | doubleword | quad] with mask
Vector Expand [byte | half | word | doubleword | quad] with mask
Move to VSR [byte | byte immediate | half | word | doubleword | quad] with mask
Vector Count Mask Bits [byte | half | word | doubleword]
Differential Revision: https://reviews.llvm.org/D83724
These might occur in seemingly generic assembly. Previously when
targeting COFF, they were silently ignored, which certainly won't
give the right result. Instead clearly error out, to make it clear
that the assembly needs to be adjusted for this target.
Also change a preexisting report_fatal_error into a proper error
message, pointing out the offending source instruction. This isn't
strictly an internal error, as it can be triggered by user input.
Differential Revision: https://reviews.llvm.org/D85242
Specified in https://github.com/WebAssembly/simd/pull/237, these
instructions load the first vector lane from memory and zero the other
lanes. Since these instructions are not officially part of the SIMD
proposal, they are only available on an opt-in basis via LLVM
intrinsics and clang builtin functions. If these instructions are
merged to the proposal, this implementation will change so that the
instructions will be generated from normal IR. At that point the
intrinsics and builtin functions would be removed.
This PR also changes the opcodes for the experimental f32x4.qfm{a,s}
instructions because their opcodes conflicted with those of the
v128.load{32,64}_zero instructions. The new opcodes were chosen to
match those used in V8.
Differential Revision: https://reviews.llvm.org/D84820
Part of https://bugs.llvm.org/show_bug.cgi?id=41734
LTO can drop externally available definitions. Such AssociatedSymbol is
not associated with a symbol. ELFWriter::writeSection() will assert.
Allow a SHF_LINK_ORDER section to have sh_link=0.
We need to give sh_link a syntax, a literal zero in the linked-to symbol
position, e.g. `.section name,"ao",@progbits,0`
Reviewed By: pcc
Differential Revision: https://reviews.llvm.org/D72899
This drops a GNU gold workaround and reverts the revert commit rL366708.
Before binutils 2.34, gold -O2 and above did not correctly handle R_386_GOTOFF to
SHF_MERGE|SHF_STRINGS sections: https://sourceware.org/bugzilla/show_bug.cgi?id=16794
From the original review:
... it reduced the size of a big ARM-32 debug image by 33%. It contained ~68M
of relocations symbols out of total ~71M symbols (96% of symbols table was
generated for relocations with symbol).
-Wl,-O2 (and -Wl,-O3) is so rare that we should just lower the
optimization level for LLVM_LINKER_IS_GOLD rather than pessimizing all users.
These prefixes should override the default behavior and force a larger immediate size. I don't believe gas issues any warning if you use {disp8} when a 32-bit displacement is already required. And this patch doesn't either.
This completes the {disp8} and {disp32} support from PR46650.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D84793
This patch implements the instruction definition and MC tests for the vector
string isolate instructions.
Differential Revision: https://reviews.llvm.org/D84197
We parse .arch so that some `.arch i386; .code32` code can assemble. It seems
that X86AsmParser does not do a good job tracking what features are needed to
assemble instructions. GNU as's x86 port supports a very wide range of .arch
operands. Ignore the operand for now.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D84900
A '*' after the segment is equivalent to a '*' before the segment register. To make the AsmMatcher table work we need to place the '*' token into the operand vector before the full memory operand. To accomplish this I've modified some portions of operand parsing to expose the operand vector to ParseATTOperand so that the token can be pushed to the vector after parsing the segment register and before creating the memory operand using that segment register.
Fixes PR46879
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D84895
Currently the instruction paddi always takes s34imm as the type for the
34 bit immediate. However, the PC Relative form of the instruction should
not produce the same fixup as the non PC Relative form.
This patch splits the s34imm type into s34imm and s34imm_pcrel so that two
different fixups can be emitted.
Reviewed By: nemanjai, #powerpc, kamaub
Differential Revision: https://reviews.llvm.org/D83255
By default we pick a 1 byte displacement and let relaxation enlarge it if necessary. The GNU assembler supports a pseudo prefix to basically pre-relax the instruction the larger size.
I plan to add {disp8} and {disp32} support for memory operands in another patch which is why I've included the parsing code and enum for {disp8} pseudo prefix as well.
Reviewed By: echristo
Differential Revision: https://reviews.llvm.org/D84709
In 16-bit mode we can encode a 32-bit address using 0x67 prefix.
We were failing to do this when the index register was a 32-bit
register, the base register was not present, and the displacement
fit in 16-bits.
Fixes PR46866.
MachO only has 24-bit addends for most relocations, small enough that it can
overflow in semi-reasonable functions and cause insidious bugs if compiled
without assertions enabled. Switch it to an actual error instead.
The condition isn't quite identical because ld64 treats the addend as a signed
number.
This patch adds the td definitions and asm/disasm tests for the following instructions:
Vector Extract Double Left Index - vextdubvlx, vextduhvlx, vextduwvlx, vextddvlx
Vector Extract Double Right Index - vextdubvrx, vextduhvrx, vextduwvrx, vextddvrx
Differential Revision: https://reviews.llvm.org/D84384
For comdats (e.g. caused by -ffunction-sections), Section is already
set here; make sure it's null, for the weak external symbol to be undefined.
This fixes PR46779.
Differential Revision: https://reviews.llvm.org/D84507
Currently supported LLVM MTBUF syntax is shown below. It is not compatible with SP3.
op dst, addr, rsrc, FORMAT, soffset
This change adds support for SP3 syntax:
op dst, addr, rsrc, soffset SP3FORMAT
In addition to being compatible with SP3, this syntax allows using symbolic names for data, numeric and unified formats. Below is a list of added syntax variants.
format:<expression>
format:[<numeric-format-name>,<data-format-name>]
format:[<data-format-name>,<numeric-format-name>]
format:[<data-format-name>]
format:[<numeric-format-name>]
format:[<unified-format-name>]
The last syntax variant is supported for GFX10 only.
See llvm bug 37738
Reviewers: arsenm, rampitec, vpykhtin
Differential Revision: https://reviews.llvm.org/D84026
16-bit literals are encoded as 32-bit values. If high 16-bits of the value is 0xFFFF, the decoded instruction cannot be reassembled.
For example, the following code
0xff,0x04,0x04,0x52,0xcd,0xab,0xff,0xff
was decoded as
v_mul_lo_u16_e32 v2, 0xffffabcd, v2
However this literal is actually a 64-bit constant 0x00000000ffffabcd which violates requirements described in the documentation - the truncation is not safe.
This change corrects decoding to make reassembly possible.
Reviewers: arsenm, rampitec
Differential Revision: https://reviews.llvm.org/D84098
When the compiler generates a GOT indirect load it must generate two loads. One
that loads the address of the element from the GOT and a second to load the
actual element based on the address just loaded from the GOT. However, the
linker can optimize these two loads into one load if it knows that it is safe
to do so. The compiler can tell the linker that the optimization is safe
by using the R_PPC64_PCREL_OPT relocation.
This patch extends the .reloc directive to allow the following setup
pld 3, vec@got@pcrel(0), 1
.Lpcrel1=.-8
... More instructions possible here ...
.reloc .Lpcrel1,R_PPC64_PCREL_OPT,.-.Lpcrel1
lwa 3, 4(3)
Reviewers: nemanjai, lei, hfinkel, sfertile, efriedma, tstellar, grosbach, MaskRay
Reviewed By: nemanjai, MaskRay
Differential Revision: https://reviews.llvm.org/D79625
Summary:
This fixes Bugzilla #46616 in which it was reported
that "tbb [pc, r0]" was marked as SoftFail
(aka unpredictable) incorrectly.
Expected behaviour is:
* ARMv8 is required to use sp as rn or rm
(tbb/tbh only have a Thumb encoding so using Arm mode
is not an option)
* If rm is the pc then the instruction is always
unpredictable
Some of this was implemented already and this fixes the
rest. Added tests cover the new and pre-existing handling.
Reviewers: ostannard
Reviewed By: ostannard
Subscribers: kristof.beyls, hiraditya, danielkiss, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D84227
This patch adds the instruction definitions and MC tests for the 128-bit Binary
Integer Operation instructions introduced in Power10.
Differential Revision: https://reviews.llvm.org/D83516
The hardware has created a real mess in the naming for add/sub, which
have been renamed basically every generation. Switch the carry out
pseudos to have the gfx9/gfx10 names. We were using the original SI/CI
v_add_i32/v_sub_i32 names. Later targets reintroduced these names as
carryless instructions with a saturating clamp bit, which we do not
define. Do this rename so we can unambiguously add these missing
instructions.
The carry-in versions should also be renamed, but at least those had a
consistent _u32 name to begin with. The 16-bit instructions were also
renamed, but aren't ambiguous.
This does regress assembler error message quality in some cases. In
mismatched wave32/wave64 situations, this will switch from
"unsupported instruction" to "invalid operand", with the error
pointing at the wrong position. I couldn't quite follow how the
assembler selects these, but the previous behavior seemed accidental
to me. It looked like there was a partial attempt to handle this which
was never completed (i.e. there is an AMDGPUOperand::isBoolReg but it
isn't used for anything).
Vector bitwise selects are matched by pseudo VBSP instruction
and expanded to VBSL/VBIT/VBIF after register allocation
depend on operands registers to minimize extra copies.
Previously we only accepted a 32-bit source with a 64-bit dest.
Accepting 64-bit as well is more consistent with gas behavior. I
think maybe we should accept 16 bit register as well, but I'm not
sure.
MTBUF implementation has many issues and this change addresses most of these:
- refactored duplicated code;
- hardcoded constants moved out of high-level code;
- fixed a decoding error when nfmt or dfmt are zero (bug 36932);
- corrected parsing of operand separators (bug 46403);
- corrected handling of missing operands (bug 46404);
- corrected handling of out-of-range modifiers (bug 46421);
- corrected default value (bug 46467).
Reviewers: arsenm, rampitec, vpykhtin, artem.tamazov, kzhuravl
Differential Revision: https://reviews.llvm.org/D83760
For `.reloc offset, *, *`, currently offset can be a constant or symbol.
This patch makes it support any expression which can be folded to sym+constant.
Reviewed By: stefanp
Differential Revision: https://reviews.llvm.org/D83751
AArch64 does not support enabling rcpc via .arch_extension in assembly.
GCC, on the other hand, does.
This patch adds 'rcpc' as a valid value to .arch_extension handling.
Differential Revision: https://reviews.llvm.org/D83685
This doesn't appear used for anything, and is emitted incorrectly
based on the description. This also depends on the IR type, and
pointee element type.
This patch upstreams support for the Arm-v8 Cortex-A78 and Cortex-X1
processors for AArch64 and ARM.
In detail:
- Adding cortex-a78 and cortex-x1 as cpu options for aarch64 and arm targets in clang
- Adding Cortex-A78 and Cortex-X1 CPU names and ProcessorModels in llvm
details of the CPU can be found here:
https://www.arm.com/products/cortex-xhttps://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a78
The following people contributed to this patch:
- Luke Geeson
- Mikhail Maltsev
Reviewers: t.p.northover, dmgreen
Reviewed By: dmgreen
Subscribers: dmgreen, kristof.beyls, hiraditya, danielkiss, cfe-commits,
llvm-commits, miyuki
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D83206
This patch adds the instruction definitions and the assembly/disassembly
tests for the Load/Store VSX Vector Rightmose instructions.
Differential Revision: https://reviews.llvm.org/D83364
Currently the instruction paddi always takes s34imm as the type for the
34 bit immediate. However, the PC Relative form of the instruction should
not produce the same fixup as the non PC Relative form.
This patch splits the s34imm type into s34imm and s34imm_pcrel so that two
different fixups can be emitted.
Reviewed By: kamaub, nemanjai
Differential Revision: https://reviews.llvm.org/D83255
Revision e1de2773a5 provided support for
accepting integer registers in inline asm i.e.
__asm("lhi %r0, 5") -> lhi %r0, 5
__asm("lhi 0, 5") -> lhi 0,5
This patch aims to extend this support to instructions which compute
addresses as well. (i.e instructions of type BDMem and BD[X|R|V|L]Mem)
Author: anirudhp
Differential Revision: https://reviews.llvm.org/D83251
This covers both the existing memory functions as well as the new bulk memory proposal.
Added new test files since changes where also required in the inputs.
Also removes unused init/drop intrinsics rather than trying to make them work for 64-bit.
Differential Revision: https://reviews.llvm.org/D82821
Summary:
Change MCExpr to support Aurora VE's modifiers. Change asmparser to use
existing MCExpr parser (parseExpression) to parse an expression contining
symbols with modifiers and offsets. Also add several regression tests
of MC layer.
Reviewers: simoll, k-ishizaka
Reviewed By: simoll
Subscribers: hiraditya, llvm-commits
Tags: #llvm, #ve
Differential Revision: https://reviews.llvm.org/D83170
* The getLine and getColumn functions need to update the position, or
they will return stale data for buffered streams. This fixes a bug in
the clang -analyzer-checker-option-help option, which was not wrapping
the help text correctly when stdout is not a TTY.
* If the stream contains multi-byte UTF-8 sequences, then the whole
sequence needs to be considered to be a single character. This has the
edge case that the buffer might fill up and be flushed part way
through a character.
* If the stream contains East Asian wide characters, these will be
rendered twice as wide as other characters, so we need to increase the
column count to match.
This doesn't attempt to handle everything unicode can do (combining
characters, right-to-left markers, ...), but hopefully covers most
things likely to be common in messages and source code we might want to
print.
Differential revision: https://reviews.llvm.org/D76291
This patch upstreams support for the Arm-v8 Cortex-A77
processor for AArch64 and ARM.
In detail:
- Adding cortex-a77 as a cpu option for aarch64 and arm targets in clang
- Cortex-A77 CPU name and ProcessorModel in llvm
details of the CPU can be found here:
https://www.arm.com/products/silicon-ip-cpu/cortex-a/cortex-a77
and a similar submission to GCC can be found here:
e0664b7a63
The following people contributed to this patch:
- Luke Geeson
- Mikhail Maltsev
Reviewers: t.p.northover, dmgreen, ostannard, SjoerdMeijer
Reviewed By: dmgreen
Subscribers: dmgreen, kristof.beyls, hiraditya, danielkiss, cfe-commits,
llvm-commits, miyuki
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D82887
This patch adds the td definitions and asm/disasm tests for the
following instructions:
XXSPLTIW
XXSPLTIDP
XXSPLTI32DX
XXPERMX
XXBLENDVB
XXBLENDVH
XXBLENDVW
XXBLENDVD
VSLDBI
VSRDBI
Differential Revision: https://reviews.llvm.org/D82896
This change lets LLVM use the LC_BUILD_VERSION command when building for macOS 10.14, iOS 12, tvOS 12, and watchOS 5.
Additionally, this change ensures that new platforms like Apple Silicon macOS / Mac Catalyst,
and simulators running on Apple Silicon alway use LC_BUILD_VERSION with the OS version set to the
minimum supported OS version if the deployment target version is older.
Differential Revision: https://reviews.llvm.org/D82836
Rename `future*` encoding test files to include ISA3.1 in the file name
and combine with exisitng ISA3.1 instruction encoding tests that were
added into `p10*` test files.
Keeping the `p10*` files for now to ensure we don't add more to it.
Will remove once all ISA3.1 instruction are implemented.
Assemble/disassemble RISC-V V extension instructions according to
latest version spec in https://github.com/riscv/riscv-v-spec/.
I have tested this patch using GNU toolchain. The encoding is aligned
to GNU assembler output. In this patch, there is a test case for each
instruction at least.
The V register definition is just for assemble/disassemble. Its type
is not important in this stage. I think it will be reviewed and modified
as we want to do codegen for scalable vector types.
This patch does not include Zvamo, Zvlsseg, and Zvediv.
Differential revision: https://reviews.llvm.org/D69987
Summary:
LDRAA and LDRAB in their writeback variant should softfail when the same
register is used as result and base.
This patch adds a custom decoder that catches such case and emits a
warning when it occurs.
Differential Revision: https://reviews.llvm.org/D82541
Give up folding an expression if the fragment of one of the operands
would require laying out a fragment already being laid out. This
prevents hitting an infinite recursion when a fill size expression
refers to a later fragment since computing the offset of that fragment
would require laying out the fill fragment and thus computing its size
expression.
Reviewed By: echristo
Differential Revision: https://reviews.llvm.org/D79570
The ARM ARM considers p10/p11 valid arguments for MCR/MRC instructions.
MRC instructions with p10 arguments are also used in kernel code which
is shared for different architectures. Turn usage of p10/p11 to warnings
for ARMv7/ARMv8-M.
Reviewers: rengolin, olista01, t.p.northover, efriedma, psmith, simon_tatham
Reviewed By: simon_tatham
Subscribers: hiraditya, danielkiss, jcai19, tpimh, nickdesaulniers, peter.smith, javed.absar, kristof.beyls, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59733
This patch implements builtins for the following prototypes:
unsigned long long __builtin_cntlzdm (unsigned long long, unsigned long long)
unsigned long long __builtin_cnttzdm (unsigned long long, unsigned long long)
vector unsigned long long vec_cntlzm (vector unsigned long long, vector unsigned long long)
vector unsigned long long vec_cnttzm (vector unsigned long long, vector unsigned long long)
Differential Revision: https://reviews.llvm.org/D80941
This patch implements builtins for the following prototypes for the VSX Permute
Control Vector Generate with Mask Instructions:
vector unsigned char vec_genpcvm (vector unsigned char, const int);
vector unsigned short vec_genpcvm (vector unsigned short, const int);
vector unsigned int vec_genpcvm (vector unsigned int, const int);
vector unsigned long long vec_genpcvm (vector unsigned long long, const int);
Differential Revision: https://reviews.llvm.org/D81774
Add disassembly support for the movw, adiw, and sbiw instructions.
I had previously committed test cases for the adiw and sbiw
instructions, but had accidentally made them not runnable so they were
skipped all this time. Oops. This patch fixes that by adding support for
disassembling those instructions.
Differential Revision: https://reviews.llvm.org/D82093
Some instructions have a fixed Z register and don't have an explicit
register operand. This can be worked around by simply printing the
operand directly if the particular register class is detected.
The LPM and ELPM instructions also needed a custom decoder, which is
also included in this patch.
Differential Revision: https://reviews.llvm.org/D82088
These can often only use a limited range of registers, and apparently
need special decoding support.
Differential Revision: https://reviews.llvm.org/D81971
This is a set of instructions that take just a single register as an
operand, with no immediates. Because all instructions share the same
format, I haven't added exhaustive bit testing to all instructions but
just to the inc instruction.
Differential Revision: https://reviews.llvm.org/D81968
This features matches ELFAsmParser and makes it possible to use `.section ".llvm.call-graph-profile","n"`
Reviewed By: zequanwu
Differential Revision: https://reviews.llvm.org/D82240
This patch implements builtins for the following prototypes:
```
vector signed char vec_clrl (vector signed char a, unsigned int n);
vector unsigned char vec_clrl (vector unsigned char a, unsigned int n);
vector signed char vec_clrr (vector signed char a, unsigned int n);
vector signed char vec_clrr (vector unsigned char a, unsigned int n);
```
Differential Revision: https://reviews.llvm.org/D81707
We were missing the modrm byte this instruction has according
to current Intel SDM. Experiments with gcc indicate that different
modrm values are chosen based on 2 operands so I've added those
as well.
I think our previous implementation was based on an older behavior of
binutils that has since been changed.
These are documented as using modrm byte of 0xe8, 0xf0, and 0xf8
respectively. But hardware ignore bits 2:0. So 0xe9-0xef is treated
the same as 0xe8. Similar for the other two.
Fixing this required adding 8 new formats to the X86 instructions
to convey this information. Could have gotten away with 3, but
adding all 8 made for a more logical conversion from format to
modrm encoding.
I renumbered the format encodings to keep the register modrm
formats grouped together.
The 32-bit type relocation (R_MIPS_32) cannot be used for instructions below:
ori $4, $4, start
ori $4, $4, (start - .)
We should print an error instead.
Reviewed By: atanasyan, MaskRay
Differential Revision: https://reviews.llvm.org/D81908
This patch implements builtins for the following prototypes:
vector unsigned long long vec_pdep(vector unsigned long long, vector unsigned long long);
vector unsigned long long vec_pext(vector unsigned long long, vector unsigned long long __b);
unsigned long long __builtin_pdepd (unsigned long long, unsigned long long);
unsigned long long __builtin_pextd (unsigned long long, unsigned long long);
Revision Depends on D80758
Differential Revision: https://reviews.llvm.org/D80935
This needed two fixes:
* 32-bit instructions were read in the wrong order. The machine code
swaps the two 16-bit instruction words, which wasn't undone when
decoding instructions.
* Jump and call instructions don't encode the lowest address bit,
which is always zero. Therefore, the address needed to be shifted by
one to fix that.
Differential Revision: https://reviews.llvm.org/D81961
It seems to be a hardware defect that the half inline constants do not
work as expected for the 16-bit integer operations (the inverse does
work correctly). Experimentation seems to show these are really
reading the 32-bit inline constants, which can be observed by writing
inline asm using op_sel to see what's in the high half of the
constant. Theoretically we could fold the high halves of the 32-bit
constants using op_sel.
The *_asm_all.s MC tests are broken, and I don't know where the script
to autogenerate these are. I started manually fixing it, but there's
just too many cases to fix. This also does break the
assembler/disassembler support for these values, and I'm not sure what
to do about it. These are still valid encodings, so it seems like you
should be able to use them in some way. If you wrote assembly using
them, you could have really meant it (perhaps to read the high bits
with op_sel?). The disassembler will print the invalid literal
constant which will fail to re-assemble. The behavior is also
different depending on the use context. Consider this example, which
was previously accepted and encoded using the inline constant:
v_mad_i16 v5, v1, -4.0, v3
; encoding: [0x05,0x00,0xec,0xd1,0x01,0xef,0x0d,0x04]
In contexts where an inline immediate is required (such as on gfx8/9),
this will now be rejected. For gfx10, this will produce the literal
encoding and change the printed format:
v_mad_i16 v5, v1, 0xc400, v3
; encoding: [0x05,0x00,0x5e,0xd7,0x01,0xff,0x0d,0x04,0x00,0xc4,0x00,0x00]
This is just another variation of the issue that we don't perfectly
handle round trip assembly/disassembly due to not tracking how
immediates were encoded. This doesn't matter much in practice, since
compilers don't emit the suboptimal encoding. I doubt any users are
relying on this behavior (although I did make use of the old behavior
to figure out what was wrong).
Fixes bug 46302.
Summary: Rename --elf-cg-profile to --cg-profile and keep --elf-cg-profile as an alias of --cg-profile.
Reviewers: jhenderson, MaskRay, espindola, hans
Reviewed By: jhenderson, MaskRay
Subscribers: emaste, rupprecht, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81855
Compiling assembly files when newlines are reduced to line markers within a `.macro` context will generate wrong information in `.debug_line` section.
This patch fixes this issue by evaluating line markers within the macro scope but not when they are used and evaluated.
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D80381
Note that .eh_frame sections are generated in the 32-bit format even
when debug sections are 64-bit, for compatibility reasons. They use
relative references between entries, so they hardly benefit from the
64-bit format.
Differential Revision: https://reviews.llvm.org/D81149
DW_FORM_sec_offset was introduced in DWARFv4, so, for 64-bit DWARFv3,
DW_FORM_data8 should be used instead.
Differential Revision: https://reviews.llvm.org/D81148
The patch enables producing DWARF64 compilation units and fixes
generating references to .debug_abbrev and .debug_line sections.
A similar change for .debug_ranges/.debug_rnglists will be added
in a forthcoming patch.
Differential Revision: https://reviews.llvm.org/D81145
The patch adds an option `--dwarf64` to instruct a tool to generate
debug information in the 64-bit DWARF format. There is no real
implementation yet, only a few compatibility checks.
Differential Revision: https://reviews.llvm.org/D81143
This adds 4 new reloc types.
A lot of code that previously assumed any memory or offset values could be contained in a uint32_t (and often truncated results from functions returning 64-bit values) have been upgraded to uint64_t. This is not comprehensive: it is only the values that come in contact with the new relocation values and their dependents.
A new tablegen mapping was added to automatically upgrade loads/stores in the assembler, which otherwise has no way to select for these instructions (since they are indentical other than for the offset immediate). It follows a similar technique to https://reviews.llvm.org/D53307
Differential Revision: https://reviews.llvm.org/D81704
Context: https://github.com/WebAssembly/memory64/blob/master/proposals/memory64/Overview.md
This is just a first step, adding the new instruction variants while keeping the existing 32-bit functionality working.
Some of the basic load/store tests have new wasm64 versions that show that the basics of the target are working.
Further features need implementation, but these will be added in followups to keep things reviewable.
Differential Revision: https://reviews.llvm.org/D80769
Summary:
Change VEAsmParser to support identification with relocation information
in assmebler. Change VEAsmBackend to support relocation information in
MC layer. Change VEDisassembler and VEMCCodeEmitter to support binary
generation of branch target operands. Add REFLONG fixup and variant kind
to support new R_VE_REFLONG ELF symbol. And, add regression test in both
MC and CodeGen to check binary genaration with relocation information.
Differential Revision: https://reviews.llvm.org/D81553
Summary:
We have defined MTSPR/MFSPR and MTSPR8/MFSPR8, but we only defined
mtspr/mfspr InstAlias for some MTSPR/MFSPR.
This patch is to add the InstAlias definitions for MTSPR8/MFSPR8,
and add the some new mtspr/mfspr InstAlias we may use.
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D77531
The spec for these says they need 0xf3 but also mentions REP
before the mnemonic. But I don't think its fair to users to make
them write REP first. And gas doesn't make them. objdump seems to
disassemble with or without the prefix and just prints any 0xf3
as REP.
The in, out, and sbi/cbi family of instructions seem to require a custom
decoder. I'm not exactly sure why and would prefer to convince TableGen
to provide the correct decoders for these, but I can't seem to convince
it to do so. They simply disassemble without any operands.
Differential Revision: https://reviews.llvm.org/D74049
This patch allows for usage of the @PLT modifier in AArch64 assembly which
lowers to an R_AARCH64_PLT32 relocation. See D81184 for handling this
relocation in lld.
Differential Revision: https://reviews.llvm.org/D81446
Summary:
Add CVTSQ/CVTDQ/CVTQD/CVTQS instructions. Add regression tests for
them and other convert instructions of asmparser, mccodeemitter, and
disassembler. In order to add those instructions, support RD operands
in asmparser, mccodeemitter, and disassembler.
Differential Revision: https://reviews.llvm.org/D81536
Summary:
Add LHM/SHM instructions. Add regression tests for them of asmparser,
mccodeemitter, and disassembler. In order to add those instructions,
add new decode functions to disassembler, and add new print functions
to instprinter.
Differential Revision: https://reviews.llvm.org/D81535
Summary:
It is important to emit HINT instructions instead of BTI ones when
BTI is disabled. This allows compatibility with other assemblers
(e.g. GAS).
Still, developers of assembly code will want to write code that is
compatible with both pre- and post-BTI CPUs. They could use HINT
mnemonics, but the new mnemonics are a lot more readable (e.g.
bti c instead of hint #34), and they will result in the same
encodings. So, while LLVM should not *emit* the new mnemonics when
BTI is disabled, this patch will at least make LLVM *accept*
assembly code that uses them.
Reviewers: pbarrio, tamas.petz, ostannard
Reviewed By: pbarrio, ostannard
Subscribers: ostannard, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81257
Summary:
As specified in https://github.com/WebAssembly/simd/pull/232. These
instructions are implemented as LLVM intrinsics for now rather than
normal ISel patterns to make these instructions opt-in. Once the
instructions are merged to the spec proposal, the intrinsics will be
replaced with proper ISel patterns.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D81222