Notes are a way to add additional context to a diagnostic, but don't really make sense as standalone diagnostics. Moving forward, notes will no longer be able to be constructed directly and must be attached to a parent Diagnostic.
Notes can be attached via `attachNote`:
auto diag = ...;
diag.attachNote() << "This is a note";
--
PiperOrigin-RevId: 246545971
The parser currently expects region arguments to have a fixed, known type when
the %-name of the region argument is parsed. This may not necessarily be the
case, for example, if the region argument types are the same as the operand
types, located at the end of the operation. Furthermore, the parser currently
stores the values for region arguments internally and attaches them to the next
parsed region implicitly. This makes it impossible to attach some of the
arguments to one region and some other arguments to another region if the
regions are not textually interleaved with operation arguments.
Provide `OpAsmParser::parseRegionArgument` that parses an SSA identifier and
delays its type assignment until the region is parsed, similarly to operands.
Update `OpAsmParser::parseRegion` to accept a list of pre-parsed SSA
identifiers and a list of types instead of using SSA identifiers stored in the
parser.
--
PiperOrigin-RevId: 245491133
* dyn_cast_or_null
- This will first check if the operation is null before trying to 'dyn_cast':
Value *v = ...;
if (auto forOp = dyn_cast_or_null<AffineForOp>(v->getDefiningOp()))
...
* isa_nonnull
- This will first check if the pointer is null before trying to 'isa':
Value *v = ...;
if (isa_nonnull<AffineForOp>(v->getDefiningOp());
...
--
PiperOrigin-RevId: 242171343
Due to legacy reasons (ML/CFG function separation), regions in affine control
flow operations require contained blocks not to have terminators. This is
inconsistent with the notion of the block and may complicate code motion
between regions of affine control operations and other regions.
Introduce `affine.terminator`, a special terminator operation that must be used
to terminate blocks inside affine operations and transfers the control back to
he region enclosing the affine operation. For brevity and readability reasons,
allow `affine.for` and `affine.if` to omit the `affine.terminator` in their
regions when using custom printing and parsing format. The custom parser
injects the `affine.terminator` if it is missing so as to always have it
present in constructed operations.
Update transformations to account for the presence of terminator. In
particular, most code motion transformation between loops should leave the
terminator in place, and code motion between loops and non-affine blocks should
drop the terminator.
PiperOrigin-RevId: 240536998
Currently, regions can only be constructed by passing in a `Function` or an
`Instruction` pointer referencing the parent object, unlike `Function`s or
`Instruction`s themselves that can be created without a parent. It leads to a
rather complex flow in operation construction where one has to create the
operation first before being able to work with its regions. It may be
necessary to work with the regions before the operation is created. In
particular, in `build` and `parse` functions that are executed _before_ the
operation is created in cases where boilerplate region manipulation is required
(for example, inserting the hypothetical default terminator in affine regions).
Allow creating standalone regions. Such regions are meant to own a list of
blocks and transfer them to other regions on demand.
Each instruction stores a fixed number of regions as trailing objects and has
ownership of them. This decreases the size of the Instruction object for the
common case of instructions without regions. Keep this behavior intact. To
allow some flexibility in construction, make OperationState store an owning
vector of regions. When the Builder creates an Instruction from
OperationState, the bodies of the regions are transferred into the
instruction-owned regions to minimize copying. Thus, it becomes possible to
fill standalone regions with blocks and move them to an operation when it is
constructed, or move blocks from a region to an operation region, e.g., for
inlining.
PiperOrigin-RevId: 240368183
inherited constructors, which is cleaner and means you can now use DimOp()
to get a null op, instead of having to use Instruction::getNull<DimOp>().
This removes another 200 lines of code.
PiperOrigin-RevId: 240068113
tblgen be non-const. This requires introducing some const_cast's at the
moment, but those (and lots more stuff) will disappear in subsequent patches.
This significantly simplifies those patches because the various tblgen op emitters
get adjusted.
PiperOrigin-RevId: 239954566
This CL revisits the composition of AffineApplyOp for the special case where a symbol
itself comes from an AffineApplyOp.
This is achieved by rewriting such symbols into dims to allow composition to occur mathematically.
The implementation is also refactored to improve readability.
Rationale for locally rewriting symbols as dims:
================================================
The mathematical composition of AffineMap must always concatenate symbols
because it does not have enough information to do otherwise. For example,
composing `(d0)[s0] -> (d0 + s0)` with itself must produce
`(d0)[s0, s1] -> (d0 + s0 + s1)`.
The result is only equivalent to `(d0)[s0] -> (d0 + 2 * s0)` when
applied to the same mlir::Value* for both s0 and s1.
As a consequence mathematical composition of AffineMap always concatenates
symbols.
When AffineMaps are used in AffineApplyOp however, they may specify
composition via symbols, which is ambiguous mathematically. This corner case
is handled by locally rewriting such symbols that come from AffineApplyOp
into dims and composing through dims.
PiperOrigin-RevId: 239791597
This also eliminates some incorrect reinterpret_cast logic working around it, and numerous const-incorrect issues (like block argument iteration).
PiperOrigin-RevId: 239712029
This eliminate ConstOpPointer (but keeps OpPointer for now) by making OpPointer
implicitly launder const in a const incorrect way. It will eventually go away
entirely, this is a progressive step towards the new const model.
PiperOrigin-RevId: 239512640
- fix for getConstantBoundOnDimSize: floordiv -> ceildiv for extent
- make getConstantBoundOnDimSize also return the identifier upper bound
- fix unionBoundingBox to correctly use the divisor and upper bound identified by
getConstantBoundOnDimSize
- deal with loop step correctly in addAffineForOpDomain (covers most cases now)
- fully compose bound map / operands and simplify/canonicalize before adding
dim/symbol to FlatAffineConstraints; fixes false positives in -memref-bound-check; add
test case there
- expose mlir::isTopLevelSymbol from AffineOps
PiperOrigin-RevId: 238050395
This CL changes dialect op source files (.h, .cpp, .td) to follow the following
convention:
<full-dialect-name>/<dialect-namespace>Ops.{h|cpp|td}
Builtin and standard dialects are specially treated, though. Both of them do
not have dialect namespace; the former is still named as BuiltinOps.* and the
latter is named as Ops.*.
Purely mechanical. NFC.
PiperOrigin-RevId: 236371358
Analysis - NFC
- refactor AffineExprFlattener (-> SimpleAffineExprFlattener) so that it
doesn't depend on FlatAffineConstraints, and so that FlatAffineConstraints
could be moved out of IR/; the simplification that the IR needs for
AffineExpr's doesn't depend on FlatAffineConstraints
- have AffineExprFlattener derive from SimpleAffineExprFlattener to use for
all Analysis/Transforms purposes; override addLocalFloorDivId in the derived
class
- turn addAffineForOpDomain into a method on FlatAffineConstraints
- turn AffineForOp::getAsValueMap into an AffineValueMap ctor
PiperOrigin-RevId: 235283610
generation pass to make it drop certain assumptions, complete TODOs.
- multiple fixes for getMemoryFootprintBytes
- pass loopDepth correctly from getMemoryFootprintBytes()
- use union while computing memory footprints
- bug fixes for addAffineForOpDomain
- take into account loop step
- add domains of other loop IVs in turn that might have been used in the bounds
- dma-generate: drop assumption of "non-unit stride loops being tile space loops
and skipping those and recursing to inner depths"; DMA generation is now purely
based on available fast mem capacity and memory footprint's calculated
- handle memory region compute failures/bailouts correctly from dma-generate
- loop tiling cleanup/NFC
- update some debug and error messages to use emitNote/emitError in
pipeline-data-transfer pass - NFC
PiperOrigin-RevId: 234245969
* AffineStructures has moved to IR.
* simplifyAffineExpr/simplifyAffineMap/getFlattenedAffineExpr have moved to IR.
* makeComposedAffineApply/fullyComposeAffineMapAndOperands have moved to AffineOps.
* ComposeAffineMaps is replaced by AffineApplyOp::canonicalize and deleted.
PiperOrigin-RevId: 232586468