Commit Graph

34 Commits

Author SHA1 Message Date
Sean Fertile c069452027 [PowerPC] Fix printing of negative offsets in call instruction dissasembly.
llvm-svn: 353865
2019-02-12 17:48:22 +00:00
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00
Nemanja Ivanovic 0dad994a10 [PowerPC][NFC] Macro for register set defs for the Asm Parser
We have some unfortunate code in the back end that defines a bunch of register
sets for the Asm Parser. Every time another class is needed in the parser, we
have to add another one of those definitions with explicit lists of registers.
This NFC patch simply provides macros to use to condense that code a little bit.

Differential revision: https://reviews.llvm.org/D54433

llvm-svn: 350156
2018-12-29 16:13:11 +00:00
Benjamin Kramer 27c769d28a [Target] Untangle disassemblers
Disassemblers cannot depend on main target headers. The same is true for
MCTargetDesc, but there's a lot more cleanup needed for that.

llvm-svn: 341822
2018-09-10 12:53:46 +00:00
Justin Hibbits d52990c71b Introduce codegen for the Signal Processing Engine
Summary:
The Signal Processing Engine (SPE) is found on NXP/Freescale e500v1,
e500v2, and several e200 cores.  This adds support targeting the e500v2,
as this is more common than the e500v1, and is in SoCs still on the
market.

This patch is very intrusive because the SPE is binary incompatible with
the traditional FPU.  After discussing with others, the cleanest
solution was to make both SPE and FPU features on top of a base PowerPC
subset, so all FPU instructions are now wrapped with HasFPU predicates.

Supported by this are:
* Code generation following the SPE ABI at the LLVM IR level (calling
conventions)
* Single- and Double-precision math at the level supported by the APU.

Still to do:
* Vector operations
* SPE intrinsics

As this changes the Callee-saved register list order, one test, which
tests the precise generated code, was updated to account for the new
register order.

Reviewed by: nemanjai
Differential Revision: https://reviews.llvm.org/D44830

llvm-svn: 337347
2018-07-18 04:25:10 +00:00
Justin Hibbits 4fa4fa6a73 Complete the SPE instruction set patterns
This is the lead-up to having SPE codegen.  Add the rest of the
instructions, along with MC tests.

Differential Revision:  https://reviews.llvm.org/D44829

llvm-svn: 337346
2018-07-18 04:24:57 +00:00
Guozhi Wei 22e7da9597 [PPC] Change the register constraint of the first source operand of instruction mtvsrdd to g8rc_nox0
According to Power ISA V3.0 document, the first source operand of mtvsrdd is constant 0 if r0 is specified. So the corresponding register constraint should be g8rc_nox0.

This bug caused wrong output generated by 401.bzip2 when -mcpu=power9 and fdo are specified.

Differential Revision: https://reviews.llvm.org/D32880

llvm-svn: 302834
2017-05-11 22:17:35 +00:00
Mehdi Amini f42454b94b Move the global variables representing each Target behind accessor function
This avoids "static initialization order fiasco"

Differential Revision: https://reviews.llvm.org/D25412

llvm-svn: 283702
2016-10-09 23:00:34 +00:00
Nemanja Ivanovic 11049f8f07 [Power9] Part-word VSX integer scalar loads/stores and sign extend instructions
This patch corresponds to review:
https://reviews.llvm.org/D23155

This patch removes the VSHRC register class (based on D20310) and adds
exploitation of the Power9 sub-word integer loads into VSX registers as well
as vector sign extensions.
The new instructions are useful for a few purposes:

    Int to Fp conversions of 1 or 2-byte values loaded from memory
    Building vectors of 1 or 2-byte integers with values loaded from memory
    Storing individual 1 or 2-byte elements from integer vectors

This patch implements all of those uses.

llvm-svn: 283190
2016-10-04 06:59:23 +00:00
Kit Barton 7a1a9e01ad This reverts commit r265505.
Revert "[Power9] Implement add-pc, multiply-add, modulo, extend-sign-shift, random number, set bool, and dfp test significance".
This patch has caused a functional regression in SPEC2k6 namd, and a performance regression in mesa-pipe.

llvm-svn: 267927
2016-04-28 20:00:42 +00:00
Chuang-Yu Cheng 024a623c55 [Power9] Implement add-pc, multiply-add, modulo, extend-sign-shift, random number, set bool, and dfp test significance
This patch implement the following instructions:
- addpcis subpcis
- maddhd maddhdu maddld
- modsw moduw modsd modud
- darn
- extswsli extswsli.
- setb
- dtstsfi dtstsfiq

Total 15 instructions

Reviewers: nemanjai hfinkel tjablin amehsan kbarton

http://reviews.llvm.org/D17885

llvm-svn: 265505
2016-04-06 01:47:02 +00:00
Kit Barton ba532dc816 [Power9] Implement new vsx instructions: load, store instructions for vector and scalar
We follow the comments mentioned in http://reviews.llvm.org/D16842#344378 to
implement this new patch.

This patch implements the following vsx instructions:

Vector load/store:
lxv lxvx lxvb16x lxvl lxvll lxvh8x lxvwsx
stxv stxvb16x stxvh8x stxvl stxvll stxvx
Scalar load/store:
lxsd lxssp lxsibzx lxsihzx
stxsd stxssp stxsibx stxsihx
21 instructions

Phabricator: http://reviews.llvm.org/D16919
llvm-svn: 262906
2016-03-08 03:49:13 +00:00
Benjamin Kramer f57c1977c1 Reflect the MC/MCDisassembler split on the include/ level.
No functional change, just moving code around.

llvm-svn: 258818
2016-01-26 16:44:37 +00:00
Cameron Esfahani f97999dc46 Explicitly clear the MI operand list when getInstruction() is called. Call MI.clear() within MCD::OPC_Decode case and inside of translateInstruction() for the X86 target. Remove now unnecessary MI.clear() from ARMDisassembler.
Summary: Explicitly clear the MI operand list when getInstruction() is called.

Reviewers: hfinkel, t.p.northover, hvarga, kparzysz, jyknight, qcolombet, uweigand

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D11665

llvm-svn: 244557
2015-08-11 01:15:07 +00:00
Benjamin Kramer c11fd3e775 [PPC] Disassemble little endian ppc instructions in the right byte order
PR24122. The test is simply a byte swapped version of ppc64-encoding.txt.

llvm-svn: 242288
2015-07-15 12:56:19 +00:00
Michael Kuperstein db0712f986 Use std::bitset for SubtargetFeatures.
Previously, subtarget features were a bitfield with the underlying type being uint64_t. 
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.

The first several times this was committed (e.g. r229831, r233055), it caused several buildbot failures.
Apparently the reason for most failures was both clang and gcc's inability to deal with large numbers (> 10K) of bitset constructor calls in tablegen-generated initializers of instruction info tables. 
This should now be fixed.

llvm-svn: 238192
2015-05-26 10:47:10 +00:00
Jim Grosbach e9119e41ef MC: Modernize MCOperand API naming. NFC.
MCOperand::Create*() methods renamed to MCOperand::create*().

llvm-svn: 237275
2015-05-13 18:37:00 +00:00
Michael Kuperstein c3434b390d Reverting r237234, "Use std::bitset for SubtargetFeatures"
The buildbots are still not satisfied.
MIPS and ARM are failing (even though at least MIPS was expected to pass).

llvm-svn: 237245
2015-05-13 10:28:46 +00:00
Michael Kuperstein aba4a34ef2 Use std::bitset for SubtargetFeatures
Previously, subtarget features were a bitfield with the underlying type being uint64_t. 
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.

The first two times this was committed (r229831, r233055), it caused several buildbot failures. 
At least some of the ARM and MIPS ones were due to gcc/binutils issues, and should now be fixed.

llvm-svn: 237234
2015-05-13 08:27:08 +00:00
Nemanja Ivanovic f3c94b1e3c Add VSX Scalar loads and stores to the PPC back end
This patch corresponds to review:
http://reviews.llvm.org/D9440

It adds a new register class to the PPC back end to contain single precision
values in VSX registers. Additionally, it adds scalar loads and stores for
VSX registers.

llvm-svn: 236755
2015-05-07 18:24:05 +00:00
Alexander Kornienko f817c1cb9a Use 'override/final' instead of 'virtual' for overridden methods
The patch is generated using clang-tidy misc-use-override check.

This command was used:

  tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
    -checks='-*,misc-use-override' -header-filter='llvm|clang' \
    -j=32 -fix -format

http://reviews.llvm.org/D8925

llvm-svn: 234679
2015-04-11 02:11:45 +00:00
Kit Barton 535e69de34 Add Hardware Transactional Memory (HTM) Support
This patch adds Hardware Transaction Memory (HTM) support supported by ISA 2.07
(POWER8). The intrinsic support is based on GCC one [1], but currently only the
'PowerPC HTM Low Level Built-in Function' are implemented.

The HTM instructions follows the RC ones and the transaction initiation result
is set on RC0 (with exception of tcheck). Currently approach is to create a
register copy from CR0 to GPR and comapring. Although this is suboptimal, since
the branch could be taken directly by comparing the CR0 value, it generates code
correctly on both test and branch and just return value. A possible future
optimization could be elimitate the MFCR instruction to branch directly.

The HTM usage requires a recently newer kernel with PPC HTM enabled. Tested on
powerpc64 and powerpc64le.

This is send along a clang patch to enabled the builtins and option switch.

[1] https://gcc.gnu.org/onlinedocs/gcc/PowerPC-Hardware-Transactional-Memory-Built-in-Functions.html

Phabricator Review: http://reviews.llvm.org/D8247

llvm-svn: 233204
2015-03-25 19:36:23 +00:00
Michael Kuperstein 29704e7fb4 Revert "Use std::bitset for SubtargetFeatures"
This reverts commit r233055.

It still causes buildbot failures (gcc running out of memory on several platforms, and a self-host failure on arm), although less than the previous time.

llvm-svn: 233068
2015-03-24 12:56:59 +00:00
Michael Kuperstein 774b441b5e Use std::bitset for SubtargetFeatures
Previously, subtarget features were a bitfield with the underlying type being uint64_t. 
Since several targets (X86 and ARM, in particular) have hit or were very close to hitting this bound, switching the features to use a bitset.
No functional change.

The first time this was committed (r229831), it caused several buildbot failures. 
At least some of the ARM ones were due to gcc/binutils issues, and should now be fixed.

Differential Revision: http://reviews.llvm.org/D8542

llvm-svn: 233055
2015-03-24 09:17:25 +00:00
Hal Finkel c93a9a2cb4 [PowerPC] Add support for the QPX vector instruction set
This adds support for the QPX vector instruction set, which is used by the
enhanced A2 cores on the IBM BG/Q supercomputers. QPX vectors are 256 bytes
wide, holding 4 double-precision floating-point values. Boolean values, modeled
here as <4 x i1> are actually also represented as floating-point values
(essentially  { -1, 1 } for { false, true }). QPX shares many features with
Altivec and VSX, but is distinct from both of them. One major difference is
that, instead of adding completely-separate vector registers, QPX vector
registers are extensions of the scalar floating-point registers (lane 0 is the
corresponding scalar floating-point value). The operations supported on QPX
vectors mirrors that supported on the scalar floating-point values (with some
additional ones for permutations and logical/comparison operations).

I've been maintaining this support out-of-tree, as part of the bgclang project,
for several years. This is not the entire bgclang patch set, but is most of the
subset that can be cleanly integrated into LLVM proper at this time. Adding
this to the LLVM backend is part of my efforts to rebase bgclang to the current
LLVM trunk, but is independently useful (especially for codes that use LLVM as
a JIT in library form).

The assembler/disassembler test coverage is complete. The CodeGen test coverage
is not, but I've included some tests, and more will be added as follow-up work.

llvm-svn: 230413
2015-02-25 01:06:45 +00:00
Rafael Espindola 7fc5b87480 Pass an ArrayRef to MCDisassembler::getInstruction.
With this patch MCDisassembler::getInstruction takes an ArrayRef<uint8_t>
instead of a MemoryObject.

Even on X86 there is a maximum size an instruction can have. Given
that, it seems way simpler and more efficient to just pass an ArrayRef
to the disassembler instead of a MemoryObject and have it do a virtual
call every time it wants some extra bytes.

llvm-svn: 221751
2014-11-12 02:04:27 +00:00
Rafael Espindola 4aa6bea7a2 Misc style fixes. NFC.
This fixes a few cases of:

* Wrong variable name style.
* Lines longer than 80 columns.
* Repeated names in comments.
* clang-format of the above.

This make the next patch a lot easier to read.

llvm-svn: 221615
2014-11-10 18:11:10 +00:00
Benjamin Kramer 8c90fd71f7 Add override to overriden virtual methods, remove virtual keywords.
No functionality change. Changes made by clang-tidy + some manual cleanup.

llvm-svn: 217028
2014-09-03 11:41:21 +00:00
Chandler Carruth e96dd8975f [Modules] Make Support/Debug.h modular. This requires it to not change
behavior based on other files defining DEBUG_TYPE, which means it cannot
define DEBUG_TYPE at all. This is actually better IMO as it forces folks
to define relevant DEBUG_TYPEs for their files. However, it requires all
files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't
already. I've updated all such files in LLVM and will do the same for
other upstream projects.

This still leaves one important change in how LLVM uses the DEBUG_TYPE
macro going forward: we need to only define the macro *after* header
files have been #include-ed. Previously, this wasn't possible because
Debug.h required the macro to be pre-defined. This commit removes that.
By defining DEBUG_TYPE after the includes two things are fixed:

- Header files that need to provide a DEBUG_TYPE for some inline code
  can do so by defining the macro before their inline code and undef-ing
  it afterward so the macro does not escape.

- We no longer have rampant ODR violations due to including headers with
  different DEBUG_TYPE definitions. This may be mostly an academic
  violation today, but with modules these types of violations are easy
  to check for and potentially very relevant.

Where necessary to suppor headers with DEBUG_TYPE, I have moved the
definitions below the includes in this commit. I plan to move the rest
of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big
enough.

The comments in Debug.h, which were hilariously out of date already,
have been updated to reflect the recommended practice going forward.

llvm-svn: 206822
2014-04-21 22:55:11 +00:00
Lang Hames a1bc0f5662 [MC] Require an MCContext when constructing an MCDisassembler.
This patch re-introduces the MCContext member that was removed from
MCDisassembler in r206063, and requires that an MCContext be passed in at
MCDisassembler construction time. (Previously the MCContext member had been
initialized in an ad-hoc fashion after construction). The MCCContext member
can be used by MCDisassembler sub-classes to construct constant or
target-specific MCExprs.

This patch updates disassemblers for in-tree targets, and provides the
MCRegisterInfo instance that some disassemblers were using through the
MCContext (previously those backends were constructing their own
MCRegisterInfo instances).

llvm-svn: 206241
2014-04-15 04:40:56 +00:00
Hal Finkel 19be506a5e [PowerPC] Add subregister classes for f64 VSX values
We had stored both f64 values and v2f64, etc. values in the VSX registers. This
worked, but was suboptimal because we would always spill 16-byte values even
through we almost always had scalar 8-byte values. This resulted in an
increase in stack-size use, extra memory bandwidth, etc. To fix this, I've
added 64-bit subregisters of the Altivec registers, and combined those with the
existing scalar floating-point registers to form a class of VSX scalar
floating-point registers. The ABI code has also been enhanced to use this
register class and some other necessary improvements have been made.

llvm-svn: 205075
2014-03-29 05:29:01 +00:00
Hal Finkel 27774d9274 [PowerPC] Initial support for the VSX instruction set
VSX is an ISA extension supported on the POWER7 and later cores that enhances
floating-point vector and scalar capabilities. Among other things, this adds
<2 x double> support and generally helps to reduce register pressure.

The interesting part of this ISA feature is the register configuration: there
are 64 new 128-bit vector registers, the 32 of which are super-registers of the
existing 32 scalar floating-point registers, and the second 32 of which overlap
with the 32 Altivec vector registers. This makes things like vector insertion
and extraction tricky: this can be free but only if we force a restriction to
the right register subclass when needed. A new "minipass" PPCVSXCopy takes care
of this (although it could do a more-optimal job of it; see the comment about
unnecessary copies below).

Please note that, currently, VSX is not enabled by default when targeting
anything because it is not yet ready for that.  The assembler and disassembler
are fully implemented and tested. However:

 - CodeGen support causes miscompiles; test-suite runtime failures:
      MultiSource/Benchmarks/FreeBench/distray/distray
      MultiSource/Benchmarks/McCat/08-main/main
      MultiSource/Benchmarks/Olden/voronoi/voronoi
      MultiSource/Benchmarks/mafft/pairlocalalign
      MultiSource/Benchmarks/tramp3d-v4/tramp3d-v4
      SingleSource/Benchmarks/CoyoteBench/almabench
      SingleSource/Benchmarks/Misc/matmul_f64_4x4

 - The lowering currently falls back to using Altivec instructions far more
   than it should. Worse, there are some things that are scalarized through the
   stack that shouldn't be.

 - A lot of unnecessary copies make it past the optimizers, and this needs to
   be fixed.

 - Many more regression tests are needed.

Normally, I'd fix these things prior to committing, but there are some
students and other contributors who would like to work this, and so it makes
sense to move this development process upstream where it can be subject to the
regular code-review procedures.

llvm-svn: 203768
2014-03-13 07:58:58 +00:00
Craig Topper 73156025e0 Switch all uses of LLVM_OVERRIDE to just use 'override' directly.
llvm-svn: 202621
2014-03-02 09:09:27 +00:00
Hal Finkel 2345347eb9 Add a disassembler to the PowerPC backend
The tests for the disassembler were adapted from the encoder tests, and for the
most part, the output from the disassembler matches that encoder-test inputs.
There are some places where more-informative mnemonics could be produced
(notably for the branch instructions), and those cases are noted in the tests
with FIXMEs.

Future work includes:

 - Generating more-informative mnemonics when possible (this may also be done
   in the printer).

 - Remove the dependence on positional "numbered" operand-to-variable mapping
   (for both encoding and decoding).

 - Internally using 64-bit instruction variants in 64-bit mode (if this turns
   out to matter).

llvm-svn: 197693
2013-12-19 16:13:01 +00:00