Fixes this error:
/var/lib/buildbot/sanitizer-buildbot6/sanitizer-x86_64-linux-android/build/
llvm-project/llvm/tools/llvm-reduce/TestRunner.cpp:20:7:
error: field 'TM' will be initialized after field 'ToolName'
[-Werror,-Wreorder-ctor]
TM(std::move(TM)), ToolName(ToolName) {
^~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
Program(std::move(Program)) TM(std::move(TM))
1 error generated.
https://lab.llvm.org/buildbot/\#/builders/77/builds/19154
Adds support for reading and writing LTO bitcode files.
- Emit a summary if the original bitcode file had a summary
- Use split LTO units if the original bitcode file used them.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D127168
The intention is that these should never have undef operands. It turns
out the restriction the verifier enforces is too lax. The verifier
enforces that registers without a register class cannot be undef, but
it's valid to use a register with a register class and type. The
verifier needs to change to be based on the opcode.
MIR support is totally unusable for AMDGPU without this, since the set
of reserved registers is set from fields here.
Add a clone method to MachineFunctionInfo. This is a subtle variant of
the copy constructor that is required if there are any MIR constructs
that use pointers. Specifically, at minimum fields that reference
MachineBasicBlocks or the MachineFunction need to be adjusted to the
values in the new function.
Use the query that doesn't assert if TracksLiveness isn't set, which
needs to always be available. We also need to start printing liveins
regardless of TracksLiveness.
I'm a bit confused by what's actually stored for the allocation
hints. The MIR parser only handles the "simple" case where there's a
single hint. I don't really understand the assertion in
clearSimpleHint, or under what circumstances there are multiple hint
registers.
This reverts commit 3988bd1398.
Did not build on this bot:
https://lab.llvm.org/buildbot#builders/215/builds/6372
/usr/include/c++/9/bits/predefined_ops.h:177:11: error: no match for call to
‘(llvm::less_first) (std::pair<long unsigned int, llvm::bolt::BinaryBasicBlock*>&, const std::pair<long unsigned int, std::nullptr_t>&)’
177 | { return bool(_M_comp(*__it, __val)); }
One could reuse this functor instead of rolling out your own version.
There were a couple other cases where the code was similar, but not
quite the same, such as it might have an assertion in the lambda or other
constructs. Thus, I've not touched any of those, as it might change the
behavior in some way.
As per https://discourse.llvm.org/t/submitting-simple-nfc-patches/62640/3?u=steakhal
Chris Lattner
> LLVM intentionally has a “yes, you can apply common sense judgement to
> things” policy when it comes to code review. If you are doing mechanical
> patches (e.g. adopting less_first) that apply to the entire monorepo,
> then you don’t need everyone in the monorepo to sign off on it. Having
> some +1 validation from someone is useful, but you don’t need everyone
> whose code you touch to weigh in.
Differential Revision: https://reviews.llvm.org/D126068
When the single branch target of a block has been removed try updating
it to target a block that is kept (by scanning forward in the sequence)
instead of replacing the branch with a return instruction. Doing so
reduces the risk of breaking loop structures meaning that when the loop
is 'interesting' these reductions should have more blocks eliminated.
Differential Revision: https://reviews.llvm.org/D125766
This had the surprising behavior of using whatever instruction
happened to be first in the block as an anchor point to stick random
implicit defs on. Use a real implicit_def instead.
Many MIR reductions benefit from or require increasing the instruction
count. For example, unlike in the IR, you may need to insert a new
instruction to represent an undef. The current instruction reduction
pass works around this by sticking implicit defs on whatever
instruction happens to be first in the entry block block.
Other strategies I've applied manually include breaking instructions
with multiple defs into separate instructions, or breaking large
register defs into multiple subregister defs.
Make up a simple scoring system based on what I generally try to get
rid of first when manually reducing. Counts implicit defs as free
since reduction passes will be introducing them, although they
probably should count for something. It also might make more sense to
have a comparison the two functions, rather than having to compute a
contextless number. This isn't particularly well tested since overall
the MIR support isn't in a place where it is useful on the kinds of
testcases I want to throw at it.
There were two problems with directly copying the MMOs from the old
function. The MMOs are owned by the function's Allocator, so need to
be reallocated anyways (surprisingly I didn't notice breakage on
this). Second, the PseudoSourceValues are also allocated per function
and need to be reallocated.
The current testcase I'm trying to reduce only reproduces with IPRA
enabled and requires handling multiple functions.
The only real difference vs. the IR is the extra indirect to look for
the underlying MachineFunction, so treat the ReduceWorkItem as the
module instead of the function.
The ugliest piece of this is really the ugliness of
MachineModuleInfo. It not only tracks actual module state, but has a
number of transient fields used for isel and/or the asm printer. These
shouldn't do any harm for the use here, though they should be
separated out.
Just clone all the virtual registers instead of looking for def
operands. This preserves the register values used, simplifying the
rest of the code. This avoids needing to expose the register map to
target code.
Previously the specific values used for fixed frame indexes was in
reverse order in the cloned function from the original, and a map was
used to adjust all frame indexes to the potentially new values. Insert
the fixed objects in reverse to avoid this. This simplifies other
code, since now we don't need to track down all frame indexes. This
will allow targets that store frame indexes in MachineFunctionInfo to
simply copy the values.
Note this isn't directly observable in the test since the resulting
MIR print/parse can shuffle the IDs around (in particular the final
serialization implicitly strips out dead objects).
Removing these is extremely unhelpful and just adds extra hassle. This
is really finding out whether your test script uses -mtriple or
not. You can't meaningfully delete these fields, and the resulting
module defaults to the host.
getSuccProbability was private for some reason, saying to go through
MachineBranchProbabilityInfo. There doesn't seem to be much point to
that, as that wrapper directly calls this.
Like other areas, some of these fields aren't handled by the MIR
printer/parser so aren't tested.
This didn't work at all before, and would assert on any frame
index. Also copy the other fields, which I believe should cover
everything. There are a few that are untested since MIR serialization
is apparently still missing them (isStatepointSpillSlot,
ObjectSSPLayout, and ObjectSExt/ObjectZExt).