Dynamic lookup symbols are symbols that work like dynamic symbols
in ELF: They're not bound to a dylib like normal Mach-O twolevel lookup
symbols, but they live in a global pool and dyld resolves them against
exported symbols from all loaded dylibs.
This adds support for dynamical lookup symbols to lld/mac. They are
represented as DylibSymbols with file set to nullptr.
This also uses this support to implement the -U flag, which makes
a specific symbol that's undefined at the end of the link a
dynamic lookup symbol.
For -U, it'd be sufficient to just to a pass over remaining undefined symbols
at the end of the link and to replace them with dynamic lookup symbols then.
But I'd like to use this code to implement flat_namespace too, and that will
require real support for resolving dynamic lookup symbols in SymbolTable. So
this patch adds this now already.
While writing tests for this, I noticed that we didn't set N_WEAK_DEF in the
symbol table for DylibSymbols, so this fixes that too.
Differential Revision: https://reviews.llvm.org/D97521
See discussion on https://reviews.llvm.org/D93263
-flat_namespace isn't implemented yet, and neither is -undefined dynamic,
so this makes -undefined pretty pointless in lld/MachO for now. But once
we implement -flat_namespace (which we need to do anyways to get check-llvm
to pass with lld as host linker), the code's already there.
Follow-up to https://reviews.llvm.org/D93263#2491865
Differential Revision: https://reviews.llvm.org/D96963
Differential Revision: https://reviews.llvm.org/D95913
Usage: -bundle_loader <executable>
This option specifies the executable that will load the build output file being linked.
When building a bundle, users can use the --bundle_loader to specify an executable
that contains symbols referenced, but not implemented in the bundle.
Since we emit diagnostics for undefineds in Writer::scanRelocations()
and symbols referenced by -u flags aren't referenced by any relocations,
this needs some manual code (similar to the entry point).
Differential Revision: https://reviews.llvm.org/D94371
This is an initial base commit for ARM64 target arch support. I don't represent that it complete or bug-free, but wish to put it out for review now that some basic things like branch target & load/store address relocs are working.
I can add more tests to this base commit, or add them in follow-up commits.
It is not entirely clear whether I use the "ARM64" (Apple) or "AArch64" (non-Apple) naming convention. Guidance is appreciated.
Differential Revision: https://reviews.llvm.org/D88629
This extends {D92539} to work even when we are loading archive
members via `-force_load`. I uncovered this issue while trying to
force-load archives containing bitcode -- we were segfaulting.
In addition to fixing the `-force_load` case, this diff also addresses
the behavior of `-ObjC` when LTO bitcode is involved -- we need to
force-load those archive members if they contain ObjC categories.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D95265
This makes our error messages more informative. But the bigger motivation is for
LTO symbol resolution, which will be in an upcoming diff. The changes in this
one are largely mechanical.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D94316
Add per-reloc-type attribute bits and migrate code from per-target file into target independent code, driven by reloc attributes.
Many cleanups
Differential Revision: https://reviews.llvm.org/D95121
Run the ObjCARCContractPass during LTO. The legacy LTO backend (under
LTO/ThinLTOCodeGenerator.cpp) already does this; this diff just adds that
behavior to the new LTO backend. Without that pass, the objc.clang.arc.use
intrinsic will get passed to the instruction selector, which doesn't know how to
handle it.
In order to test both the new and old pass managers, I've also added support for
the `--[no-]lto-legacy-pass-manager` flags.
P.S. Not sure if the ordering of the pass within the pipeline matters...
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D94547
We didn't have support for parsing DriverKit in our `-platform`
flag, so add that too. Also remove a bunch of unnecessary namespace
prefixes.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93741
It's an extension to ld64, but all the other ports have it, and
someone asked for it in PR43721.
While here, change the COFF help text to match the other ports.
Differential Revision: https://reviews.llvm.org/D93491
Private extern symbols are used for things scoped to the linkage unit.
They cause duplicate symbol errors (so they're in the symbol table,
unlike TU-scoped truly local symbols), but they don't make it into the
export trie. They are created e.g. by compiling with
-fvisibility=hidden.
If two weak symbols have differing privateness, the combined symbol is
non-private external. (Example: inline functions and some TUs that
include the header defining it were built with
-fvisibility-inlines-hidden and some weren't).
A weak private external symbol implicitly has its "weak" dropped and
behaves like a regular strong private external symbol: Weak is an export
trie concept, and private symbols are not in the export trie.
If a weak and a strong symbol have different privateness, the strong
symbol wins.
If two common symbols have differing privateness, the larger symbol
wins. If they have the same size, the privateness of the symbol seen
later during the link wins (!) -- this is a bit lame, but it matches
ld64 and this behavior takes 2 lines less to implement than the less
surprising "result is non-private external), so match ld64.
(Example: `int a` in two .c files, both built with -fcommon,
one built with -fvisibility=hidden and one without.)
This also makes `__dyld_private` a true TU-local symbol, matching ld64.
To make this work, make the `const char*` StringRefZ ctor to correctly
set `size` (without this, writing the string table crashed when calling
getName() on the __dyld_private symbol).
Mention in CommonSymbol's comment that common symbols are now disabled
by default in clang.
Mention in -keep_private_externs's HelpText that the flag only has an
effect with `-r` (which we don't implement yet -- so this patch here
doesn't regress any behavior around -r + -keep_private_externs)). ld64
doesn't explicitly document it, but the commit text of
http://reviews.llvm.org/rL216146 does, and ld64's
OutputFile::buildSymbolTable() checks `_options.outputKind() ==
Options::kObjectFile` before calling `_options.keepPrivateExterns()`
(the only reference to that function).
Fixes PR48536.
Differential Revision: https://reviews.llvm.org/D93609
Obj-C symbols may have spaces and colons, which our previous order file
parser would be confused by. The order file format has made the very unfortunate
choice of using colons for its delimiters, which means that we have to use
heuristics to determine if a given colon is part of a symbol or not...
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93567
TREATMENT can be `error`, `warning`, `suppress`, or `dynamic_lookup`
The `dymanic_lookup` remains unimplemented for now.
Differential Revision: https://reviews.llvm.org/D93263
Weak references need not necessarily be satisfied at runtime (but they must
still be satisfied at link time). So symbol resolution still works as per usual,
but we now pass around a flag -- ultimately emitting it in the bind table -- to
indicate if a given dylib symbol is a weak reference.
ld64's behavior for symbols that have both weak and strong references is
a bit bizarre. For non-function symbols, it will emit a weak import. For
function symbols (those referenced by BRANCH relocs), it will emit a
regular import. I'm not sure what value there is in that behavior, and
since emulating it will make our implementation more complex, I've
decided to treat regular weakrefs like function symbol ones for now.
Fixes PR48511.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93369
From what I can tell, it's essentially identical to
`-sub_library`, but it doesn't match files ending in ".dylib".
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93276
We were not setting forceWeakImport for file paths given by
`-weak_library` if we had already loaded the file. This diff fixes that
by having `loadDylib` return a cached DylibFile instance even if we have
already loaded that file.
We still avoid emitting multiple LC_LOAD_DYLIBs, but we achieve this by
making inputFiles a SetVector instead of relying on the `loadedDylibs`
cache.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D93255
Dylibs that are "public" -- i.e. top-level system libraries -- are considered
implicitly linked when another library re-exports them. That is, we should load
them & bind directly to their symbols instead of via their re-exporting
umbrella library. This diff implements that behavior by default, as well as an
opt-out flag.
In theory, this is just a performance optimization, but in practice it seems
that it's needed for correctness.
Fixes llvm.org/PR48395.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D93000
We need to initialize AsmParsers before any calls to `addFile`, as
bitcode files may require them. Otherwise we trigger `Assertion T &&
T->hasMCAsmParser()' failed`.
Reviewed By: #lld-macho, compnerd
Differential Revision: https://reviews.llvm.org/D92913
`-mcpu` and `-code-model` tests were copied from similar ones in
LLD-ELF.
There doesn't seem to be an equivalent test for `-mattr` in LLD-ELF, so
I've verified our behavior by cribbing a test from
CodeGen/X86/recip-fastmath.ll.
Reviewed By: #lld-macho, compnerd, MaskRay
Differential Revision: https://reviews.llvm.org/D92912
This makes it possible for STABS entries to reference the debug info
contained in the LTO-compiled output.
I'm not sure how to test the file mtime within llvm-lit -- GNU and BSD
`stat` take different command-line arguments. I've omitted the check for
now.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D92537
clang puts `-framework CoreFoundation` in this load command for files
that use @available / __builtin_available. Without support for this,
binaries that don't explicitly link to CoreFoundation fail to link.
Differential Revision: https://reviews.llvm.org/D92624
The problem was that `sym` became replaced in the call
to make<ObjFile> and referring to it afer that read memory that now
stored a different kind of symbol (a Defined instead of a LazySymbol).
Since this happens only once per archive, just copy the symbol to the
stack before make<ObjFile> and read the copy instead.
Originally reviewed at https://reviews.llvm.org/D92496
This is useful for debugging why lld loads .o files it shouldn't load.
It's also useful for users of lld -- I've used ld64's version of this a
few times.
Differential Revision: https://reviews.llvm.org/D92496
Also, for .o files, include full path as given on link command line.
Before:
lld: error: undefined symbol [...], referenced from sandbox_logging.o
After:
lld: error: undefined symbol [...], referenced from libseatbelt.a(sandbox_logging.o)
Move archiveName up to InputFile so we can consistently use toString()
to print InputFiles in diags, and pass it to the ObjFile ctor. This
matches the ELF and COFF ports.
Differential Revision: https://reviews.llvm.org/D92437
- most importantly, fix a use-after-free when using thin archives,
by putting the archive unique_ptr to the arena allocator. This
ports D65565 to MachO
- correctly demangle symbol namess from archives in diagnostics
- add a test for thin archives -- it finds this UaF, but only when
running it under asan (it also finds the demangling fix)
- make forceLoadArchive() use addFile() with a bool to have the archive
loading code in fewer places. no behavior change; matches COFF port a
bit better
Differential Revision: https://reviews.llvm.org/D92360
We should also set the modtime when running LTO. That will be done in a
future diff, together with support for the `-object_path_lto` flag.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D91318
* Enable PIE by default if targeting 10.6 or above on x86-64. (The
manpage says 10.7, but that actually applies only to i386, and in
general varies based on the target platform. I didn't update the
manpage because listing all the different behaviors would make for a
pretty long description.)
* Add support for `-no_pie`
* Remove `HelpHidden` from `-pie`
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D92362
Now, new mach-o lld no longer warns if the isysroot has just
usr/lib and System/Library/Frameworks but is missing usr/local/lib
and System/Frameworks.
This matches ld64 and old mach-o lld and fixes a regression from D85992.
It also fixes the only test failure in `check-lld` when running it
on an M1 Mac.
Differential Revision: https://reviews.llvm.org/D91891
This adds support for ld.lld's --reproduce / lld-link's /reproduce:
flag to the MachO port. This flag can be added to a link command
to make the link write a tar file containing all inputs to the link
and a response file containing the link command. This can be used
to reproduce the link on another machine, which is useful for sharing
bug report inputs or performance test loads.
Since the linker is usually called through the clang driver and
adding linker flags can be a bit cumbersome, setting the env var
`LLD_REPRODUCE=foo.tar` triggers the feature as well.
The file response.txt in the archive can be used with
`ld64.lld.darwinnew $(cat response.txt)` as long as the contents are
smaller than the command-line limit, or with `ld64.lld.darwinnew
@response.txt` once D92149 is in.
The support in this patch is sufficient to create a tar file for
Chromium's base_unittests that can link after unpacking on a different
machine.
Differential Revision: https://reviews.llvm.org/D92274
This patch:
- adds an ld64.lld.darwinnew symlink for lld, to go with f2710d4b57,
so that `clang -fuse-ld=lld.darwinnew` can be used to test new
Mach-O lld while it's in bring-up. (The expectation is that we'll
remove this again once new Mach-O lld is the defauld and only Mach-O
lld.)
- lets the clang driver know if the linker is lld (currently
only triggered if `-fuse-ld=lld` or `-fuse-ld=lld.darwinnew` is
passed). Currently only used for the next point, but could be used
to implement other features that need close coordination between
compiler and linker, e.g. having a diag for calling `clang++` instead
of `clang` when link errors are caused by a missing C++ stdlib.
- lets the clang driver pass `-demangle` to Mach-O lld (both old and
new), in addition to ld64
- implements -demangle for new Mach-O lld
- changes demangleItanium() to accept _Z, __Z, ___Z, ____Z prefixes
(and updates one test added in D68014). Mach-O has an extra
underscore for symbols, and the three (or, on Mach-O, four)
underscores are used for block names.
Differential Revision: https://reviews.llvm.org/D91884
This adds `--[no-]color-diagnostics[=auto,never,always]` to
the MachO port and harmonizes the flag in the other ports:
- Consistently use MetaVarName
- Consistently document the non-eq version as alias of the eq version
- Use B<> in the ports that have it (no-op, shorter)
- Fix oversight in COFF port that made the --no flag have the wrong
prefix
Differential Revision: https://reviews.llvm.org/D91640
Just enough to consume some bitcode files and link them. There's more
to be done around the symbol resolution API and the LTO config, but I don't yet
understand what all the various LTO settings do...
Reviewed By: #lld-macho, compnerd, smeenai, MaskRay
Differential Revision: https://reviews.llvm.org/D90663
Stub dylibs differ from "real" dylibs in that they lack any content in
their sections. What they do have are export tries and symbol tables,
which means we can still link against them. I am unclear how to
properly create these stub dylibs; XCode 11.3's `lipo` is able to create
stub dylibs, but those lack LC_ID_DYLIB load commands and are considered
invalid by most tooling. Newer versions of `lipo` aren't able to create
stub dylibs at all. However, recent SDKs in XCode still come with valid
stub dylibs, so it still seems worthwhile to support them. The YAML in
this diff's test was generated by taking a non-stub dylib and editing
the appropriate fields.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D89012
Apparently this is used in real programs. I've handled this by reusing
the logic we already have for branch (function call) relocations.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D87852
Not 100% sure but it appears that bundles are almost identical to
dylibs, aside from the fact that they do not contain `LC_ID_DYLIB`. ld64's code
seems to treat bundles and dylibs identically in most places.
Supporting bundles allows us to run e.g. XCTests, as all test suites are
compiled into bundles which get dynamically loaded by the `xctest` test runner.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D87856