to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
This adds support for the 'event section' specified in the exception
handling proposal. (This was named 'exception section' first, but later
renamed to 'event section' to take possibilities of other kinds of
events into consideration. But currently we only store exception info in
this section.)
The event section is added between the global section and the export
section. This is for ease of validation per request of the V8 team.
This patch:
- Creates the event symbol type, which is a weak symbol
- Makes 'throw' instruction take the event symbol '__cpp_exception'
- Adds relocation support for events
- Adds WasmObjectWriter / WasmObjectFile (Reader) support
- Adds obj2yaml / yaml2obj support
- Adds '.eventtype' printing support
Reviewers: dschuff, sbc100, aardappel
Subscribers: jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D54096
llvm-svn: 346825
When a landing pad is calculated in a program that is compiled
for micromips, it will point to an even address. Such an error will
cause a segmentation fault, as the instructions in micromips are
aligned on odd addresses. This patch sets the last bit of the offset
where a landing pad is, to 1, which will effectively be
an odd address and point to the instruction exactly.
Differential Revision: https://reviews.llvm.org/D52985
llvm-svn: 344591
Summary:
These are emitted by the wasm backend for e.g.
__stack_pointer@GLOBAL which previously wasn't accepted by the
assembler.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, llvm-commits, sunfish
Differential Revision: https://reviews.llvm.org/D52911
llvm-svn: 343830
Allow the comparison of x86 registers in the evaluation of assembler
directives. This generalizes and simplifies the extension from r334022
to catch another case found in the Linux kernel.
Reviewers: rnk, void
Reviewed By: rnk
Subscribers: hiraditya, nickdesaulniers, llvm-commits
Differential Revision: https://reviews.llvm.org/D50795
llvm-svn: 339895
Enables using the high and high-adjusted symbol modifiers on thread local
storage modifers in powerpc assembly. Needed to be able to support 64 bit
thread-pointer and dynamic-thread-pointer access sequences.
Differential Revision: https://reviews.llvm.org/D47754
llvm-svn: 334856
Add support for the "@high" and "@higha" symbol modifiers in powerpc64 assembly.
The modifiers represent accessing the segment consiting of bits 16-31 of a
64-bit address/offset.
Differential Revision: https://reviews.llvm.org/D47729
llvm-svn: 334855
For RISC-V it is desirable to have relaxation happen in the linker once
addresses are known, and as such the size between two instructions/byte
sequences in a section could change.
For most assembler expressions, this is fine, as the absolute address results
in the expression being converted to a fixup, and finally relocations.
However, for expressions such as .quad .L2-.L1, the assembler folds this down
to a constant once fragments are laid out, under the assumption that the
difference can no longer change, although in the case of linker relaxation the
differences can change at link time, so the constant is incorrect. One place
where this commonly appears is in debug information, where the size of a
function expression is in a form similar to the above.
This patch extends the assembler to allow an AsmBackend to declare that it
does not want the assembler to fold down this expression, and instead generate
a pair of relocations that allow the linker to carry out the calculation. In
this case, the expression is not folded, but when it comes to emitting a
fixup, the generic FK_Data_* fixups are converted into a pair, one for the
addition half, one for the subtraction, and this is passed to the relocation
generating methods as usual. I have named these FK_Data_Add_* and
FK_Data_Sub_* to indicate which half these are for.
For RISC-V, which supports this via e.g. the R_RISCV_ADD64, R_RISCV_SUB64 pair
of relocations, these are also set to always emit relocations relative to
local symbols rather than section offsets. This is to deal with the fact that
if relocations were calculated on e.g. .text+8 and .text+4, the result 12
would be stored rather than 4 as both addends are added in the linker.
Differential Revision: https://reviews.llvm.org/D45181
Patch by Simon Cook.
llvm-svn: 333079
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
Teach AsmParser to check with Assembler for when evaluating constant
expressions. This improves the handing of preprocessor expressions
that must be resolved at parse time. This idiom can be found as
assembling-time assertion checks in source-level assemblers. Note that
this relies on the MCStreamer to keep sufficient tabs on Section /
Fragment information which the MCAsmStreamer does not. As a result the
textual output may fail where the equivalent object generation would
pass. This can most easily be resolved by folding the MCAsmStreamer
and MCObjectStreamer together which is planned for in a separate
patch.
Currently, this feature is only enabled for assembly input, keeping IR
compilation consistent between assembly and object generation.
Reviewers: echristo, rnk, probinson, espindola, peter.smith
Reviewed By: peter.smith
Subscribers: eraman, peter.smith, arichardson, jyknight, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D45164
llvm-svn: 331218
See r331124 for how I made a list of files missing the include.
I then ran this Python script:
for f in open('filelist.txt'):
f = f.strip()
fl = open(f).readlines()
found = False
for i in xrange(len(fl)):
p = '#include "llvm/'
if not fl[i].startswith(p):
continue
if fl[i][len(p):] > 'Config':
fl.insert(i, '#include "llvm/Config/llvm-config.h"\n')
found = True
break
if not found:
print 'not found', f
else:
open(f, 'w').write(''.join(fl))
and then looked through everything with `svn diff | diffstat -l | xargs -n 1000 gvim -p`
and tried to fix include ordering and whatnot.
No intended behavior change.
llvm-svn: 331184
It uses the MC framework and the tablegen matcher to do the
heavy lifting. Can handle both explicit and implicit locals
(-disable-wasm-explicit-locals). Comes with a small regression
test.
This is a first basic implementation that can parse most llvm .s
output and round-trips most instructions succesfully, but in order
to keep the commit small, does not address all issues.
There are a fair number of mismatches between what MC / assembly
matcher think a "CPU" should look like and what WASM provides,
some already have workarounds in this commit (e.g. the way it
deals with register operands) and some that require further work.
Some of that further work may involve changing what the
Disassembler outputs (and what s2wasm parses), so are probably
best left to followups.
Some known things missing:
- Many directives are ignored and not emitted.
- Vararg calls are parsed but extra args not emitted.
- Loop signatures are likely incorrect.
- $drop= is not emitted.
- Disassembler does not output SIMD types correctly, so assembler
can't test them.
Patch by Wouter van Oortmerssen
Differential Revision: https://reviews.llvm.org/D44329
llvm-svn: 328028
Extension to D12776, handle modulo by zero in the same way we handle divide by zero.
Differential Revision: https://reviews.llvm.org/D43631
llvm-svn: 325810
Summary:
Add LLVM_FORCE_ENABLE_DUMP cmake option, and use it along with
LLVM_ENABLE_ASSERTIONS to set LLVM_ENABLE_DUMP.
Remove NDEBUG and only use LLVM_ENABLE_DUMP to enable dump methods.
Move definition of LLVM_ENABLE_DUMP from config.h to llvm-config.h so
it'll be picked up by public headers.
Differential Revision: https://reviews.llvm.org/D38406
llvm-svn: 315590
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Summary:
This is a continuation of D28861. Add an SMLoc to MCUnaryExpr such that
a better diagnostic can be given in case of an error in later stages of
assembling.
Reviewers: rengolin, grosbach, javed.absar, olista01
Reviewed By: olista01
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30581
llvm-svn: 297454
With the "wasm32-unknown-unknown-wasm" triple, this allows writing out
simple wasm object files, and is another step in a larger series toward
migrating from ELF to general wasm object support. Note that this code
and the binary format itself is still experimental.
llvm-svn: 296190
@ABS8 can be applied to symbols which appear as immediate operands to
instructions that have a 8-bit immediate form for that operand. It causes
the assembler to use the 8-bit form and an 8-bit relocation (e.g. R_386_8
or R_X86_64_8) for the symbol.
Differential Revision: https://reviews.llvm.org/D28688
llvm-svn: 293667
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html
For reference:
- Public headers should just declare the dump() method but not use
LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MyClass::dump() {
// print stuff to dbgs()...
}
#endif
llvm-svn: 293359
Add a SMLoc to MCExpr. Most code does not generate or consume the SMLoc (yet).
Patch by Sanne Wouda <sanne.wouda@arm.com>!
Differential Revision: https://reviews.llvm.org/D28861
llvm-svn: 292515
Summary:
This is much closer to the way MIPS relocation expressions work
(%hi(foo + 2) rather than %hi(foo) + 2) and removes the need for the
various bodges in MipsAsmParser::evaluateRelocExpr().
Removing those bodges ensures that the constant stored in MCValue is the
full 32 or 64-bit (depending on ABI) offset from the symbol. This will be used
to correct the %hi/%lo matching needed to sort the relocation table correctly.
As part of this:
* Gave MCExpr::print() the ability to omit parenthesis when emitting a
symbol reference inside a MipsMCExpr operator like %hi(X). Without this
we print things like %lo(($L1)).
* %hi(%neg(%gprel(X))) is now three MipsMCExpr's instead of one. Most of
the related special cases have been removed or moved to MipsMCExpr. We
can remove the rest as we gain support for the less common relocations
when they are not part of this specific combination.
* Renamed MipsMCExpr::VariantKind and the enum prefix ('VK_') to avoid confusion
with MCSymbolRefExpr::VariantKind and its prefix (also 'VK_').
* fixup_Mips_GOT_Local and fixup_Mips_GOT_Global were found to be identical
and merged into fixup_Mips_GOT.
* MO_GOT16 and MO_GOT turned out to be identical and have been merged into
MO_GOT.
* VK_Mips_GOT and VK_Mips_GOT16 turned out to be the same thing so they
have been merged into MEK_GOT
Reviewers: sdardis
Subscribers: dsanders, sdardis, llvm-commits
Differential Revision: http://reviews.llvm.org/D19716
llvm-svn: 268379
`MCSymbolRefExpr` variant kind for TLSCALL is prefixed with
_ARM_ since this is how it was originally implemented.
The X86_64 version is exactly the same so there's no reason
to create a new variant, we can just rename the existing
one to be machine-independent.
This generalization is the first step to implement support
for GNU2 TLS dialect in MC.
Differential Revision: http://reviews.llvm.org/D18160
llvm-svn: 263515
Currently WebAssembly has two kinds of relocations; data addresses and
function addresses. This adds ELF relocations for them, as well as an
MC symbol kind to indicate which type of relocation is needed.
llvm-svn: 257416
In PIC mode we were previously computing global variable addresses (or GOT
entry addresses) by adding the PC, the PC-relative GOT displacement and
the GOT-relative symbol/GOT entry displacement. Because the latter two
displacements are fixed, we ended up performing one more addition than
necessary.
This change causes us to compute addresses using a single PC-relative
displacement, resulting in a shorter code sequence. This reduces code size
by about 4% in a recent build of Chromium for Android.
As a result of this change we no longer need to compute the GOT base address
in the ARM backend, which allows us to remove the Global Base Reg pass and
SDAG lowering for the GOT.
We also now no longer use the GOT when addressing a symbol which is known
to be defined in the same linkage unit. Specifically, the symbol must have
either hidden visibility or a strong definition in the current module in
order to not use the the GOT.
This is a change from the previous behaviour where we would use the GOT to
address externally visible symbols defined in the same module. I think the
only cases where this could matter are cases involving symbol interposition,
but we don't really support that well anyway.
Differential Revision: http://reviews.llvm.org/D13650
llvm-svn: 251322
This extends the work done in r233995 so that now getFragment (in addition to
getSection) also works for variable symbols.
With that the existing logic to decide if a-b can be computed works even if
a or b are variables. Given that, the expression evaluation can avoid expanding
variables as aggressively and that in turn lets the relocation code see the
original variable.
In order for this to work with the asm streamer, there is now a dummy fragment
per section. It is used to assign a section to a symbol when no other fragment
exists.
This patch is a joint work by Maxim Ostapenko andy myself.
llvm-svn: 249303
We hit undefined behaviour in some MCExpr tests when the LHS of a left
shift is -1. Twos-complement semantics are completely reasonable here,
so we should just do the shift in unsigned.
llvm-svn: 240385