It makes the --plugin-opt=obj-path= and --plugin-opt=thinlto-index-only=
behavior more consistent - the files will be created in the
BitcodeFiles.empty() case, but I assume whether it behaves this way is
not required by anyone.
LTOObj->run() cannot run with empty BitcodeFiles. There would be an error:
ld.lld: error: No available targets are compatible with triple ""
Differential Revision: https://reviews.llvm.org/D61635
llvm-svn: 360129
Summary:
The gold plugin behavior (creating empty index files for lazy bitcode
files) was added in D46034, but it missed the case when there is no
non-lazy bitcode files, e.g.
ld.lld -shared crti.o crtbeginS.o --start-lib bitcode.o --end-lib ...
crti.o crtbeginS.o are not bitcode, but our distributed build system
wants bitcode.o.thinlto.bc to confirm all expected outputs are created
based on all of the modules provided to the linker.
Differential Revision: https://reviews.llvm.org/D61420
llvm-svn: 359788
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Instead of writing empty index for file, this patch tracks the state of files in ObjectToIndexFileState. If the files are not indexed , only then we emit the empty files
Differential Revision: https://reviews.llvm.org/D46480
llvm-svn: 331803
Previously, code to initialize Backend and code to initialize Conf are
intermingled in init(), though they don't depend on each other.
Differential Revision: https://reviews.llvm.org/D46554
llvm-svn: 331698
New lld's files are spread under lib subdirectory, and it isn't easy
to find which files are actually maintained. This patch moves maintained
files to Common subdirectory.
Differential Revision: https://reviews.llvm.org/D37645
llvm-svn: 314719
With this we only ask LTO to keep a C named section if there is a
__start_ or __end symbol.
This is not as strict as lld's --gc-sections, but is as good as we can
get without having a far more detailed ir summary.
llvm-svn: 309232
This patch adds an option named --thinlto-cache-dir, which specifies the
path to a directory in which to cache native object files for ThinLTO
incremental builds.
Differential Revision: https://reviews.llvm.org/D30509
llvm-svn: 296702
Thunks are now implemented by redirecting the relocation to the
symbol S, to a symbol TS in a Thunk. The Thunk will transfer control
to S. This has the following implications:
- All the side-effects of Thunks happen within createThunks()
- Thunks are no longer stored in InputSections and Symbols no longer
need to hold a pointer to a Thunk
- The synthetic Thunk sections need to be merged into OutputSections
This implementation is almost a direct conversion of the existing
Thunks with the following exceptions:
- Mips LA25 Thunks are placed before the InputSection that defines
the symbol that needs a Thunk.
- All ARM Thunks are placed at the end of the OutputSection of the
first caller to the Thunk.
Range extension Thunks are not supported yet so it is optimistically
assumed that all Thunks can be reused.
This is a recommit of r293283 with a fixed comparison predicate as
std::merge requires a strict weak ordering.
Differential revision: https://reviews.llvm.org/D29327
llvm-svn: 293757
Thunks are now implemented by redirecting the relocation to the
symbol S, to a symbol TS in a Thunk. The Thunk will transfer control
to S. This has the following implications:
- All the side-effects of Thunks happen within createThunks()
- Thunks are no longer stored in InputSections and Symbols no longer
need to hold a pointer to a Thunk
- The synthetic Thunk sections need to be merged into OutputSections
This implementation is almost a direct conversion of the existing
Thunks with the following exceptions:
- Mips LA25 Thunks are placed before the InputSection that defines
the symbol that needs a Thunk.
- All ARM Thunks are placed at the end of the OutputSection of the
first caller to the Thunk.
Range extension Thunks are not supported yet so it is optimistically
assumed that all Thunks can be reused.
Differential Revision: https://reviews.llvm.org/D29129
llvm-svn: 293283
In a shared library an undefined symbol is implicitly imported. If the
symbol is called as a function a PLT entry is generated for it. When the
caller is a Thumb b.w a thunk to the PLT entry is needed as all PLT
entries are in ARM state.
This change allows undefined symbols to have thunks in the same way that
shared symbols may have thunks.
llvm-svn: 290951
Previously, we have a lot of BumpPtrAllocators, but all these
allocators virtually have the same lifetime because they are
not freed until the linker finishes its job. This patch aggregates
them into a single allocator.
Differential revision: https://reviews.llvm.org/D26042
llvm-svn: 285452
We used to have one allocator per file, which reduces the advantage of
using an allocator in the first place.
This is a small speed up is most cases. The largest speedup was in
1.014X in chromium no-gc. The largest slowdown was scylla at 1.003X.
llvm-svn: 285205
Previously, all input files were owned by the symbol table.
Files were created at various places, such as the Driver, the lazy
symbols, or the bitcode compiler, and the ownership of new files
was transferred to the symbol table using std::unique_ptr.
All input files were then free'd when the symbol table is freed
which is on program exit.
I think we don't have to transfer ownership just to free all
instance at once on exit.
In this patch, all instances are automatically collected to a
vector and freed on exit. In this way, we no longer have to
use std::unique_ptr.
Differential Revision: https://reviews.llvm.org/D24493
llvm-svn: 281425
This fixes PR28218. Thanks to Rafael for spotting a failure in
the SHARED_LIBS build!
Differential Revision: http://reviews.llvm.org/D21577
llvm-svn: 273451
Using multiple context used to be a really big memory saving because we
could free memory from each file while the linker proceeded with the
symbol resolution. We are getting lazier about reading data from the
bitcode, so I was curious if this was still a good tradeoff.
One thing that is a bit annoying is that we still have to copy the
symbol names. The problem is that the names are stored in the Module and
get freed when we move the module bits during linking.
Long term I think the solution is to add a symbol table to the bitcode.
That way IRObject file will not need to use a Module or a Context and we
can drop it while still keeping a StringRef to the names.
This patch is still be an interesting medium term improvement.
When linking llvm-as without debug info this patch is a small speedup:
master: 29.861877513 seconds
patch: 29.814533787 seconds
With debug info the numbers are
master: 34.765181469 seconds
patch: 34.563351584 seconds
The peak memory usage when linking llvm-as with debug info was
master: 599.10MB
patch: 600.13MB
llvm-svn: 267921
Parallelism level can be chosen using the new --lto-jobs=K option
where K is the number of threads used for CodeGen. It currently
defaults to 1.
llvm-svn: 266484
IPO doesn't work very well across symbols referenced
by others TUs. The linker here tries to evaluate
which symbols are safe to internalize and switches
their linkage.
Differential Revision: http://reviews.llvm.org/D18415
llvm-svn: 264585
The code for LTO has been growing, so now is probably a good time to
move it to its own file. SymbolTable.cpp is for symbol table, and
because compiling bitcode files are semantically not a part of
symbol table, this is I think a good thing to do.
http://reviews.llvm.org/D18370
llvm-svn: 264091