Commit Graph

11 Commits

Author SHA1 Message Date
Yaxun (Sam) Liu bcadb1f2e6 Revert "[CUDA][HIP][OpenMP] Emit deferred diagnostics by a post-parsing AST travese"
This reverts commit 1b978ddba0.
2020-02-18 14:45:34 -05:00
Yaxun (Sam) Liu 1b978ddba0 [CUDA][HIP][OpenMP] Emit deferred diagnostics by a post-parsing AST travese
This patch removes the explicit call graph for CUDA/HIP/OpenMP deferred
diagnostics generated during parsing since it is error prone due to
incomplete information about function declarations during parsing. In stead,
this patch does a post-parsing AST traverse and emits deferred diagnostics
based on the use graph implicitly generated during the traverse.

Differential Revision: https://reviews.llvm.org/D70172
2020-02-16 22:44:33 -05:00
Yaxun Liu c5be267003 [CUDA][HIP][Sema] Fix template kernel with function as template parameter
If a kernel template has a function as its template parameter, a device function should be
allowed as template argument since a kernel can call a device function. However,
currently if the kernel template is instantiated in a host function, clang will emit an error
message saying the device function is an invalid candidate for the template parameter.

This happens because clang checks the reference to the device function during parsing
the template arguments. At this point, the template is not instantiated yet. Clang incorrectly
assumes the device function is called by the host function and emits the error message.

This patch fixes the issue by disabling checking of device function during parsing template
arguments and deferring the check to the instantion of the template. At that point, the
template decl is already available, therefore the check can be done against the instantiated
function template decl.

Differential Revision: https://reviews.llvm.org/D56411

llvm-svn: 355421
2019-03-05 18:19:35 +00:00
Artem Belevich 78929efb4d [CUDA] Ignore uncallable functions when we check for usual deallocators.
Previously clang considered function variants from both sides of
compilation and that resulted in picking up wrong deallocation function.

Differential Revision: https://reviews.llvm.org/D51808

llvm-svn: 342749
2018-09-21 17:29:33 +00:00
Justin Lebar 4d38a5cf74 [CUDA] Simplify some repeated diagnostic expectations in CUDA tests.
Instead of repeating the diagnostic, use "expected-note N".

Test-only change.

llvm-svn: 284882
2016-10-21 20:50:47 +00:00
Justin Lebar 6c86e9160d [CUDA] When we emit an error that might have been deferred, also print a callstack.
Summary:
Previously, when you did something not allowed in a host+device function
and then caused it to be codegen'ed, we would print out an error telling
you that you did something bad, but we wouldn't tell you how we decided
that the function needed to be codegen'ed.

This change causes us to print out a callstack when emitting deferred
errors.  This is immensely helpful when debugging highly-templated code,
where it's often unclear how a function became known-emitted.

We only print the callstack once per function, after we print the all
deferred errors.

This patch also switches all of our hashtables to using canonical
FunctionDecls instead of regular FunctionDecls.  This prevents a number
of bugs, some of which are caught by tests added here, in which we
assume that two FDs for the same function have the same pointer value.

Reviewers: rnk

Subscribers: cfe-commits, tra

Differential Revision: https://reviews.llvm.org/D25704

llvm-svn: 284647
2016-10-19 21:15:01 +00:00
Justin Lebar 23d954241b [CUDA] Emit deferred diagnostics during Sema rather than during codegen.
Summary:
Emitting deferred diagnostics during codegen was a hack.  It did work,
but usability was poor, both for us as compiler devs and for users.  We
don't codegen if there are any sema errors, so for users this meant that
they wouldn't see deferred errors if there were any non-deferred errors.
For devs, this meant that we had to carefully split up our tests so that
when we tested deferred errors, we didn't emit any non-deferred errors.

This change moves checking for deferred errors into Sema.  See the big
comment in SemaCUDA.cpp for an overview of the idea.

This checking adds overhead to compilation, because we have to maintain
a partial call graph.  As a result, this change makes deferred errors a
CUDA-only concept (whereas before they were a general concept).  If
anyone else wants to use this framework for something other than CUDA,
we can generalize at that time.

This patch makes the minimal set of test changes -- after this lands,
I'll go back through and do a cleanup of the tests that we no longer
have to split up.

Reviewers: rnk

Subscribers: cfe-commits, rsmith, tra

Differential Revision: https://reviews.llvm.org/D25541

llvm-svn: 284158
2016-10-13 20:52:12 +00:00
Richard Smith f75dcbef20 Aligned allocation versus CUDA: make deallocation function preference order
match other CUDA preference orders, per discussion with jlebar. We now model
this in an attempt to match overload resolution as closely as possible:

- First, we throw out all non-callable (due to CUDA host/device mismatch)
  operator delete functions.
- Then we apply sizedness / alignedness preferences based on whether the type
  is overaligned and whether the deallocation function is a member.
- Finally, we use the CUDA callability preference as a tiebreaker.

llvm-svn: 283830
2016-10-11 00:21:10 +00:00
Justin Lebar 9fdb46e71c [CUDA] Do a better job at detecting wrong-side calls.
Summary:
Move CheckCUDACall from ActOnCallExpr and BuildDeclRefExpr to
DiagnoseUseOfDecl.  This lets us catch some edge cases we were missing,
specifically around class operators.

This necessitates a few other changes:

 - Avoid emitting duplicate deferred diags in CheckCUDACall.

   Previously we'd carefully placed our call to CheckCUDACall such that
   it would only ever run once for a particular callsite.  But now this
   isn't the case.

 - Emit deferred diagnostics from a template
   specialization/instantiation's primary template, in addition to from
   the specialization/instantiation itself.  DiagnoseUseOfDecl ends up
   putting the deferred diagnostics on the template, rather than the
   specialization, so we need to check both.

Reviewers: rsmith

Subscribers: cfe-commits, tra

Differential Revision: https://reviews.llvm.org/D24573

llvm-svn: 283637
2016-10-08 01:07:11 +00:00
Justin Lebar 26bb31123a [CUDA] Fix "declared here" note on deferred wrong-side errors.
Previously we weren't deferring these "declared here" notes, which is
obviously wrong.

llvm-svn: 278767
2016-08-16 00:48:21 +00:00
Justin Lebar 18e2d82297 [CUDA] Raise an error if a wrong-side call is codegen'ed.
Summary:
Some function calls in CUDA are allowed to appear in
semantically-correct programs but are an error if they're ever
codegen'ed.  Specifically, a host+device function may call a host
function, but it's an error if such a function is ever codegen'ed in
device mode (and vice versa).

Previously, clang made no attempt to catch these errors.  For the most
part, they would be caught by ptxas, and reported as "call to unknown
function 'foo'".

Now we catch these errors and report them the same as we report other
illegal calls (e.g. a call from a host function to a device function).

This has a small change in error-message behavior for calls that were
previously disallowed (e.g. calls from a host to a device function).
Previously, we'd catch disallowed calls fairly early, before doing
additional semantic checking e.g. of the call's arguments.  Now we catch
these illegal calls at the very end of our semantic checks, so we'll
only emit a "illegal CUDA call" error if the call is otherwise
well-formed.

Reviewers: tra, rnk

Subscribers: cfe-commits

Differential Revision: https://reviews.llvm.org/D23242

llvm-svn: 278759
2016-08-15 23:00:49 +00:00