This extends the code that handles 16-bit add promotion to form LEA to also allow 8-bit adds.
That allows us to combine add ops with register moves and save some instructions. This is
another step towards allowing add truncation in generic DAGCombiner (see D54640).
Differential Revision: https://reviews.llvm.org/D55494
llvm-svn: 348946
Version.inc.in processing has a potentially interesting part which I've punted
on for now (LLD_REVISION and LLD_REPOSITORY are set to empty strings for now).
lld now builds in the gn build. But no symlinks to it are created yet, so it
can't be meaningfully run yet.
Differential Revision: https://reviews.llvm.org/D55593
llvm-svn: 348945
When multiple loop transformation are defined in a loop's metadata, their order of execution is defined by the order of their respective passes in the pass pipeline. For instance, e.g.
#pragma clang loop unroll_and_jam(enable)
#pragma clang loop distribute(enable)
is the same as
#pragma clang loop distribute(enable)
#pragma clang loop unroll_and_jam(enable)
and will try to loop-distribute before Unroll-And-Jam because the LoopDistribute pass is scheduled after UnrollAndJam pass. UnrollAndJamPass only supports one inner loop, i.e. it will necessarily fail after loop distribution. It is not possible to specify another execution order. Also,t the order of passes in the pipeline is subject to change between versions of LLVM, optimization options and which pass manager is used.
This patch adds 'followup' attributes to various loop transformation passes. These attributes define which attributes the resulting loop of a transformation should have. For instance,
!0 = !{!0, !1, !2}
!1 = !{!"llvm.loop.unroll_and_jam.enable"}
!2 = !{!"llvm.loop.unroll_and_jam.followup_inner", !3}
!3 = !{!"llvm.loop.distribute.enable"}
defines a loop ID (!0) to be unrolled-and-jammed (!1) and then the attribute !3 to be added to the jammed inner loop, which contains the instruction to distribute the inner loop.
Currently, in both pass managers, pass execution is in a fixed order and UnrollAndJamPass will not execute again after LoopDistribute. We hope to fix this in the future by allowing pass managers to run passes until a fixpoint is reached, use Polly to perform these transformations, or add a loop transformation pass which takes the order issue into account.
For mandatory/forced transformations (e.g. by having been declared by #pragma omp simd), the user must be notified when a transformation could not be performed. It is not possible that the responsible pass emits such a warning because the transformation might be 'hidden' in a followup attribute when it is executed, or it is not present in the pipeline at all. For this reason, this patche introduces a WarnMissedTransformations pass, to warn about orphaned transformations.
Since this changes the user-visible diagnostic message when a transformation is applied, two test cases in the clang repository need to be updated.
To ensure that no other transformation is executed before the intended one, the attribute `llvm.loop.disable_nonforced` can be added which should disable transformation heuristics before the intended transformation is applied. E.g. it would be surprising if a loop is distributed before a #pragma unroll_and_jam is applied.
With more supported code transformations (loop fusion, interchange, stripmining, offloading, etc.), transformations can be used as building blocks for more complex transformations (e.g. stripmining+stripmining+interchange -> tiling).
Reviewed By: hfinkel, dmgreen
Differential Revision: https://reviews.llvm.org/D49281
Differential Revision: https://reviews.llvm.org/D55288
llvm-svn: 348944
Clang's CallGraph analysis doesn't use the RecursiveASTVisitor's setting
togo into template instantiations. The result is that anything wanting
to do call graph analysis ends up missing any template function calls.
Change-Id: Ib4af44ed59f15d43f37af91622a203146a3c3189
llvm-svn: 348942
Previously CreateParameterDeclaration was always using the translation
unit DeclContext. We would later go and add parameters to the
FunctionDecl, but internally clang makes a copy when you do this, and
we'd end up with ParmVarDecl's at the global scope as well as in the
function scope.
This fixes the issue. It's hard to say whether this will introduce
a behavioral change in name lookup, but I know there have been several
hacks introduced in previous years to deal with collisions between
various types of variables, so there's a chance that this patch could
obviate one of those hacks.
Differential Revision: https://reviews.llvm.org/D55571
llvm-svn: 348941
For SampleFDO, when a callsite doesn't appear in the profile, it will not be marked as cold callsite unless the option -profile-sample-accurate is specified.
But profile-sample-accurate doesn't cover function isFunctionColdInCallGraph which is used to decide whether a function should be put into text.unlikely section, so even if the user knows the profile is accurate and specifies profile-sample-accurate, those functions not appearing in the sample profile are still not be put into text.unlikely section right now.
The patch fixes that.
Differential Revision: https://reviews.llvm.org/D55567
llvm-svn: 348940
The Darwin targets use `int64_t` and `uint64_t` to define the `int_least64_t`
and `int_fast64_t` types. The underlying type is actually a `long long`. Match
the types to allow the printf specifiers to work properly and have the compiler
vended macros match the implementation on the target.
llvm-svn: 348939
Summary:
`memchr` and `memcmp` operate upon the character units of the object
representation; that is, the `size_t` parameter expresses the number of
character units. The constant folding implementation is updated in this
patch to account for multibyte element types in the arrays passed to
`memchr`/`memcmp` and, in the case of `memcmp`, to account for the
possibility that the arrays may have differing element types (even when
they are byte-sized).
Actual inspection of the object representation is not implemented.
Comparisons are done only between elements with the same object size;
that is, `memchr` will fail when inspecting at least one character unit
of a multibyte element. The integer types are assumed to have two's
complement representation with 0 for `false`, 1 for `true`, and no
padding bits.
`memcmp` on multibyte elements will only be able to fold in cases where
enough elements are equal for the answer to be 0.
Various tests are added to guard against incorrect folding for cases
that miscompile on some system or other prior to this patch. At the same
time, the unsigned 32-bit `wchar_t` testing in
`test/SemaCXX/constexpr-string.cpp` is restored.
Reviewers: rsmith, aaron.ballman, hfinkel
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D55510
llvm-svn: 348938
I've extended the load/store optimizer to be able to produce dwordx3
loads and stores, This change allows many more load/stores to be combined,
and results in much more optimal code for our hardware.
Differential Revision: https://reviews.llvm.org/D54042
llvm-svn: 348937
Move code into a separate function, and replace the if-else chain with
llvm::StringSwitch.
A slight behavioral change is that now I use the section flags
(SHF_TLS) instead of the section name to set the thread-specific
property. There is no explanation in the original commit introducing
this (r153537) as to why that was done this way, but the new behavior
should be more correct.
llvm-svn: 348936
Summary:
Added support for the -gline-directives-only option + fixed logic of the
debug info for CUDA devices. If optimization level is O0, then options
--[no-]cuda-noopt-device-debug do not affect the debug info level. If
the optimization level is >O0, debug info options are used +
--no-cuda-noopt-device-debug is used or no --cuda-noopt-device-debug is
used, the optimization level for the device code is kept and the
emission of the debug directives is used.
If the opt level is > O0, debug info is requested +
--cuda-noopt-device-debug option is used, the optimization is disabled
for the device code + required debug info is emitted.
Reviewers: tra, echristo
Subscribers: aprantl, guansong, JDevlieghere, cfe-commits
Differential Revision: https://reviews.llvm.org/D51554
llvm-svn: 348930
This library was breaking my -DBUILD_SHARED_LIBS=1 build. rC348915 seemed to miss this case.
As this seems an "obvious" fix, I am committing without pre-commit review as
per the LLVM developer policy.
llvm-svn: 348929
Instead of GetProgramHeaderCount+GetProgramHeaderByIndex, expose an
ArrayRef of all program headers, to enable range-based iteration.
Instead of GetSegmentDataByIndex, expose GetSegmentData, taking a
program header (reference).
This makes the code simpler by enabling range-based loops and also
allowed to remove some null checks, as it became locally obvious that
some pointers can never be null.
llvm-svn: 348928
Address spaces are cast into generic before invoking the constructor.
Added support for a trailing Qualifiers object in FunctionProtoType.
Differential Revision: https://reviews.llvm.org/D54862
llvm-svn: 348927
If either of the operand elements are zero then we know the result element is going to be zero (even if the other element is undef).
Differential Revision: https://reviews.llvm.org/D55558
llvm-svn: 348926
Previously, lldb-test would only print top-level sections. However, in
lldb, sections can contain other sections. This teaches lldb-test to
print nested sections too.
llvm-svn: 348924
Summary:
This patch provides a means to set Metadata section kind
for a global variable, if its explicit section name is
prefixed with ".AMDGPU.metadata."
This could be useful to make the global variable go to
an ELF section without any section flags set.
Reviewers: dstuttard, tpr, kzhuravl, nhaehnle, t-tye
Reviewed By: dstuttard, kzhuravl
Subscribers: llvm-commits, arsenm, jvesely, wdng, yaxunl, t-tye
Differential Revision: https://reviews.llvm.org/D55267
llvm-svn: 348922
Unfortunately we can't use TableGen for this because it doesn't yet
support predicates on the source pattern root. Therefore, add a bit of
handwritten code to the instruction selector to handle the most basic
cases.
Also mark them as legal and extract their legalizer test cases to a new
test file.
llvm-svn: 348920
Summary:
This implements the gcc builder in build.py script to allow it to
compile host executables when running on a non-windows host. Where it
made sense, I tried to share code with the msvc builder by moving stuff
to the base class.
Reviewers: zturner
Subscribers: mehdi_amini, dexonsmith, lldb-commits
Differential Revision: https://reviews.llvm.org/D55430
llvm-svn: 348918
This is a more thorough fix of rC348911.
The story about -DBUILD_SHARED_LIBS=on build after rC348907 (Move PCHContainerOperations from Frontend to Serialization) is:
1. libclangSerialization.so defines PCHContainerReader dtor, ...
2. clangFrontend and clangTooling define classes inheriting from PCHContainerReader, thus their DSOs have undefined references on PCHContainerReader dtor
3. Components depending on either clangFrontend or clangTooling cannot be linked unless they have explicit dependency on clangSerialization due to the default linker option -z defs. The explicit dependency could be avoided if libclang{Frontend,Tooling}.so had these undefined references.
This patch adds the explicit dependency on clangSerialization to make them build.
llvm-svn: 348915
Add an intrinsic that takes 2 signed integers with the scale of them provided
as the third argument and performs fixed point multiplication on them.
This is a part of implementing fixed point arithmetic in clang where some of
the more complex operations will be implemented as intrinsics.
Differential Revision: https://reviews.llvm.org/D54719
llvm-svn: 348912
The diff in targets.gni is due to me running `gn format` on all .gn and .gni
files.
llvm_enable_dia_sdk is in a gni file because I'm going to have to read it when
writing the lit invocations for check-llvm and check-lld. I've never had the
DIA sdk installed locally so I never tested building with it enabled -- it
probably doesn't Just Work and needs some path to diaguids.lib. We can finish
that once somebody needs it.
Differential Revision: https://reviews.llvm.org/D55591
llvm-svn: 348908
Without this check, we hit an assertion in getZExtValue, if the constant
value does not fit into an uint64_t.
As getZExtValue returns an uint64_t, should we update
getAggregateElement to take an uin64_t as well?
This fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=6109.
Reviewers: efriedma, craig.topper, spatel
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D55547
llvm-svn: 348906
lldb on Windows uses the ExecutionEngine for expression evaluation
and hits the llvm_unreachable due to this relocation. Thus, implement
the relocation and add a test to verify it's function.
llvm-svn: 348904
The tablegen setup for Target/X86 is a bit different from the CMake build: In
the CMake build, Target/X86/CMakeLists.txt has a single tablegen target that
does everything. But some of the generated files are only used privately by a
subproject, so in the GN build some of the tablegen invocations are
smaller-scoped, mostly for build cleanliness. (It helps also a tiny bit with
build parallelism since now e.g. the cpp files in MCTargetDesc can build after
just 3 .inc files are generated instead of being blocked on all 13. But it's
not a big win, since things depending on Target still need to wait for all 11,
even though all .inc file use is internal to lib/Target.)
Also add a build file for llc, since now all its dependencies have build files.
Differential Revision: https://reviews.llvm.org/D55524
llvm-svn: 348903
Summary:
Any time a symbol record, whether it's S_UDT, S_LOCAL, or S_[GL]DATA32,
references a record type, it should use the complete type index, even if
there's a typedef in the way.
Fixes the compiler part of PR39853.
Reviewers: zturner, aganea
Subscribers: hiraditya, arphaman, llvm-commits
Differential Revision: https://reviews.llvm.org/D55236
llvm-svn: 348902
As reported in PR39946, these two implementations cause stack overflows
to occur when a type recursively contains itself. While this only
happens when an incomplete version of itself is used by membership (and
thus an otherwise invalid program), the crashes might be surprising.
The solution here is to replace the recursive implementation with one
that uses a std::vector as a queue. Old values are kept around to
prevent re-checking already checked types.
Change-Id: I582bb27147104763d7daefcfee39d91f408b9fa8
llvm-svn: 348899
Temporarily reverts commit r348806 due to strange asm compilation issues in certain modes (combination of asan+cuda+other things). Will provide repro soon.
llvm-svn: 348898