This patch introduces a LLDB_SCOPED_TIMER macro to hide the needlessly
repetitive creation of scoped timers in LLDB. It's similar to the
LLDB_LOG(F) macro.
Differential revision: https://reviews.llvm.org/D93663
Kill (rather than detach) form the inferior if debugserver loses its
connection to lldb to prevent zombie processes.
Differential revision: https://reviews.llvm.org/D92908
This patch is a big sed to rename the following variables:
s/PYTHON_LIBRARIES/Python3_LIBRARIES/g
s/PYTHON_INCLUDE_DIRS/Python3_INCLUDE_DIRS/g
s/PYTHON_EXECUTABLE/Python3_EXECUTABLE/g
s/PYTHON_RPATH/Python3_RPATH/g
I've also renamed the CMake module to better express its purpose and for
consistency with FindLuaAndSwig.
Differential revision: https://reviews.llvm.org/D85976
Color the error: and warning: part of the CommandReturnObject output,
similar to how an error is printed from the driver when colors are
enabled.
Differential revision: https://reviews.llvm.org/D81058
It seems like only the unittests are building with
BUILD_WITH_INSTALL_RPATH set to OFF. Of course when I did my last change
I only ran check-lldb-unit. Not sure why this difference exists, why
would you even install the unittest?
For the LLDB framework we do need different build and install RPATHs.
Currently that logic lives downstream. I plan to upstream that in the
near future. For now I'm just trying to make it possible to run the
test.
The install name for the Python 3 framework in Xcode is relative to
the framework's location and not the dylib itself.
@rpath/Python3.framework/Versions/3.x/Python3
This means that we need to compute the path to the Python3.framework
and use that as the RPATH instead of the usual dylib's directory.
This patch threads an lldb::DescriptionLevel through the typesystem to
allow dumping the full Clang AST (level=verbose) of any lldb::Type in
addition to the human-readable source description (default
level=full). This type dumping interface is currently not exposed
through the SBAPI.
The application is to let lldb-test dump the clang AST of search
results. I need this to test lazy type completion of clang types in
subsequent patches.
Differential Revision: https://reviews.llvm.org/D78329
Seems like this code raised some alarm bells as it looks like an ArrayRef
to a temporary initializer list, but it's actually just calling the ArrayRef(T*, T*)
constructor. Let's clarify this and directly call the right ArrayRef constructor here.
Fixes rdar://problem/59176052
This patch changes the way we initialize and terminate the plugins in
the system initializer. It uses an approach similar to LLVM's
TARGETS_TO_BUILD with a def file that enumerates the plugins.
Previous attempts to land this failed on the Windows bot because there's
a dependency between the different process plugins. Apparently
ProcessWindowsCommon needs to be initialized after all other process
plugins but before ProcessGDBRemote.
Differential revision: https://reviews.llvm.org/D73067
The WASM and Hexagon plugin check the ArchType rather than the OSType,
so explicitly reject those in the DynamicLoaderStatic.
Differential revision: https://reviews.llvm.org/D74780
Generate the LLDB_PLUGIN_DECLARE macros with CMake and a def file. I'm
landing D73067 in pieces so I can bisect what exactly is breaking the
Windows bot.
Other plugins depend on DynamicLoaderDarwinKernel and which means we
cannot conditionally enable/build this plugin based on the target
platform. This means that it will be past of the list of plugins
initialized once that's autogenerated.
Summary:
All of our lookup APIs either use `CompilerDeclContext &` or `CompilerDeclContext *` semi-randomly it seems.
This leads to us constantly converting between those two types (and doing nullptr checks when going from
pointer to reference). It also leads to the confusing situation where we have two possible ways to express
that we don't have a CompilerDeclContex: either a nullptr or an invalid CompilerDeclContext (aka a default
constructed CompilerDeclContext).
This moves all APIs to use references and gets rid of all the nullptr checks and conversions.
Reviewers: labath, mib, shafik
Reviewed By: labath, shafik
Subscribers: shafik, arphaman, abidh, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74607
LLDB has a few different styles of header guards and they're not very
consistent because things get moved around or copy/pasted. This patch
unifies the header guards across LLDB and converts everything to match
LLVM's style.
Differential revision: https://reviews.llvm.org/D74743
Use LLDB_PLUGIN_DEFINE_ADV to make the name of the generated initializer
match the name of the plugin. This is a step towards generating the
initializers with a def file. I'm landing this change in pieces so I can
narrow down what exactly breaks the Windows bot.
This patch changes the way we initialize and terminate the plugins in
the system initializer. It uses an approach similar to LLVM's
TARGETS_TO_BUILD with a def file that enumerates the plugins.
The previously landed patch got reverted because it was lacking:
(1) A plugin definition for the Objective-C language runtime,
(2) The dependency between the Static and WASM dynamic loader,
(3) Explicit initialization of ScriptInterpreterNone for lldb-test.
All issues have been addressed in this patch.
Differential revision: https://reviews.llvm.org/D73067
This patch changes the way we initialize and terminate the plugins in
the system initializer. It uses an approach similar to LLVM's
TARGETS_TO_BUILD with a def file that enumerates the plugins.
Differential revision: https://reviews.llvm.org/D73067
After the recent change that grouped some of the ABI plugins together,
those plugins ended up with multiple initializers per plugin. This is
incompatible with my proposed approach of generating the initializers
dynamically, which is why I've grouped them together in a new entry
point.
Differential revision: https://reviews.llvm.org/D74451
Move the logic for initialization and termination for DynamicLoaderMacOS
into DynamicLoaderMacOSXDYLD so that there's one initializer for the
DynamicLoaderMacOSXDYLD plugin.
Move the logic for initialization and termination for
SymbolFileDWARFDebugMap into SymbolFileDWARF so that there's one
initializer for the SymbolFileDWARF plugin.
Apparently Linux and Windows have the exact opposite behavior when it
comes to inline declarations of external functions. On Linux they're
considered to be part of the lldb_private namespace, while on Windows
they're considered to be part of the top level namespace. Somehow on
macOS, it doesn't really matter and both are fine...
At this point I don't know what to do, so I'm just adding the
LLDB_PLUGIN_DECLARE macros again as originally proposed in D74245.
This is a step towards making the initialize and terminate calls be
generated by CMake, which in turn is towards making it possible to
disable plugins at configuration time.
Differential revision: https://reviews.llvm.org/D74245
Summary:
There's a fair amount of code duplication between the different ABI plugins for
the same architecture (e.g. ABIMacOSX_arm & ABISysV_arm). Deduplicating this
code is not very easy at the moment because there is no good place where to put
the common code.
Instead of creating more plugins, this patch reduces their number by grouping
similar plugins into a single folder/plugin. This makes it easy to extract
common code to a (e.g.) base class, which can then live in the same folder.
The grouping is done based on the underlying llvm target for that architecture,
because the plugins already require this for their operation.
Reviewers: JDevlieghere, jasonmolenda, jfb
Subscribers: sdardis, nemanjai, mgorny, kristof.beyls, fedor.sergeev, kbarton, jrtc27, atanasyan, jsji, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74138
This patch has a couple of outstanding issues. The test is not python3
compatible, and it also seems to fail with python2 (at least under some
circumstances) due to an overambitious assertion.
This reverts the patch as well as subsequent fixup attempts:
014ea93376,
f5f70d1c8f.
4697e701b8.
5c15e8e682.
3ec28da6d6.
Summary:
This change represents the move of ClangASTImporter, ClangASTMetadata,
ClangExternalASTSourceCallbacks, ClangUtil, CxxModuleHandler, and
TypeSystemClang from lldbSource to lldbPluginExpressionParserClang.h
This explicitly removes knowledge of clang internals from lldbSymbol,
moving towards a more generic core implementation of lldb.
Reviewers: JDevlieghere, davide, aprantl, teemperor, clayborg, labath, jingham, shafik
Subscribers: emaste, mgorny, arphaman, jfb, usaxena95, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D73661
Summary:
This commit renames ClangASTContext to TypeSystemClang to better reflect what this class is actually supposed to do
(implement the TypeSystem interface for Clang). It also gets rid of the very confusing situation that we have both a
`clang::ASTContext` and a `ClangASTContext` in clang (which sometimes causes Clang people to think I'm fiddling
with Clang's ASTContext when I'm actually just doing LLDB work).
I also have plans to potentially have multiple clang::ASTContext instances associated with one ClangASTContext so
the ASTContext naming will then become even more confusing to people.
Reviewers: #lldb, aprantl, shafik, clayborg, labath, JDevlieghere, davide, espindola, jdoerfert, xiaobai
Reviewed By: clayborg, labath, xiaobai
Subscribers: wuzish, emaste, nemanjai, mgorny, kbarton, MaskRay, arphaman, jfb, usaxena95, jingham, xiaobai, abidh, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D72684
AppleObjCRuntime is the main entry point to the plugin with the same
name. This is part of a greater refactoring to auto generate the
initializers. NFC.
Differential revision: https://reviews.llvm.org/D73121
These files should do the more or less the same initialize/terminate calls in the
same order. This just reverts all the differences that have piled up over time
in the SystemInitializerTest that people keep forgetting about.
Summary:
This is the first in a series of patches to enable LLDB debugging of
WebAssembly targets.
Current versions of Clang emit (partial) DWARF debug information in WebAssembly
modules and we can leverage this debug information to give LLDB the ability to
do source-level debugging of Wasm code that runs in a WebAssembly engine.
A way to do this could be to use the remote debugging functionalities provided
by LLDB via the GDB-remote protocol. Remote debugging can indeed be useful not
only to connect a debugger to a process running on a remote machine, but also to
connect the debugger to a managed VM or script engine that runs locally,
provided that the engine implements a GDB-remote stub that offers the ability to
access the engine runtime internal state.
To make this work, the GDB-remote protocol would need to be extended with a few
Wasm-specific custom query commands, used to access aspects of the Wasm engine
state (like the Wasm memory, Wasm local and global variables, and so on).
Furthermore, the DWARF format would need to be enriched with a few Wasm-specific
extensions, here detailed: https://yurydelendik.github.io/webassembly-dwarf.
This CL introduce classes **ObjectFileWasm**, a file plugin to represent a Wasm
module loaded in a debuggee process. It knows how to parse Wasm modules and
store the Code section and the DWARF-specific sections.
Reviewers: jasonmolenda, clayborg, labath
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71575