Adds flang/include/flang/Common/log2-visit.h, which defines
a Fortran::common::visit() template function that is a drop-in
replacement for std::visit(). Modifies most use sites in
the front-end and runtime to use common::visit().
The C++ standard mandates that std::visit() have O(1) execution
time, which forces implementations to build dispatch tables.
This new common::visit() is O(log2 N) in the number of alternatives
in a variant<>, but that N tends to be small and so this change
produces a fairly significant improvement in compiler build
memory requirements, a 5-10% improvement in compiler build time,
and a small improvement in compiler execution time.
Building with -DFLANG_USE_STD_VISIT causes common::visit()
to be an alias for std::visit().
Calls to common::visit() with multiple variant arguments
are referred to std::visit(), pending further work.
This change is enabled only for GCC builds with GCC >= 9;
an earlier attempt (D122441) ran into bugs in some versions of
clang and was reverted rather than simply disabled; and it is
not well tested with MSVC. In non-GCC and older GCC builds,
common::visit() is simply an alias for std::visit().
f18 was emitting a warning about short character actual arguments to
subprograms and statement functions; every other compiler considers this
case to be an error.
Differential Revision: https://reviews.llvm.org/D123731
Error messages can have a list of attachments; these are used to point
to related source locations, supply additional information, and to
encapsulate error messages that were *not* emitted in a given context
to explain why a warning was justified.
This patch adds a message severity ("Because") for that last case,
and extends to AttachTo() API to provide a means for overriding
the severity of an attached message.
Some existing message attachments had their severities adjusted,
now that we're printing them. And operator==() for Message was
cleaned up while debugging after I noticed that it was recursively
O(N**2) and subject to returning a false positive.
Differential Revision: https://reviews.llvm.org/D123710
The actual argument shall have deferred the same type parameters as
the dummy argument if the argument is allocatable or pointer variable.
Currently programs not following this get one crash during execution.
Reviewed By: Jean Perier
Differential Revision: https://reviews.llvm.org/D122779
Previously, some semantic checks that are checking if an entity is an
allocatable were relying on the expression being a designator whose
last symbol has the allocatable attribute.
This is wrong since this was considering substrings and array sections of
allocatables as being allocatable. This is wrong (see NOTE 2 in
Fortran 2018 section 9.5.3.1).
Add evaluate::IsAllocatableDesignator to correctly test this.
Also add some semantic tests for ALLOCATED to test the newly added helper.
Note that ifort and nag are rejecting coindexed-named-object in
ALLOCATED (`allocated(coarray_scalar_alloc[2])`).
I think it is wrong given allocated argument is intent(in) as per
16.2.1 point 3.
So 15.5.2.6 point 4 regarding allocatable dummy is not violated (If the actual
argument is a coindexed object, the dummy argument shall have the INTENT (IN)
attribute.) and I think this is valid. gfortran accepts it.
The need for this helper was exposed in https://reviews.llvm.org/D122779.
Differential Revision: https://reviews.llvm.org/D122899
Co-authored-by: Peixin-Qiao <qiaopeixin@huawei.com>
Adds flang/include/flang/Common/visit.h, which defines
a Fortran::common::visit() template function that is a drop-in
replacement for std::visit(). Modifies most use sites in
the front-end and runtime to use common::visit().
The C++ standard mandates that std::visit() have O(1) execution
time, which forces implementations to build dispatch tables.
This new common::visit() is O(log2 N) in the number of alternatives
in a variant<>, but that N tends to be small and so this change
produces a fairly significant improvement in compiler build
memory requirements, a 5-10% improvement in compiler build time,
and a small improvement in compiler execution time.
Building with -DFLANG_USE_STD_VISIT causes common::visit()
to be an alias for std::visit().
Calls to common::visit() with multiple variant arguments
are referred to std::visit(), pending further work.
Differential Revision: https://reviews.llvm.org/D122441
evaluate::IsPointerObject used to return true for pointer suboject like
`pointer(10)` while these object are not pointers. This prevented some
checks like 15.5.2.7 to be correctly enforced (e.g., it was possible to
pass `pointer(10)` to a non intent(in) dummy pointer).
After updating IsPointerObject behavior and adding a test for 15.5.2.7 in
call07.f90, a test in call03.f90 for 15.5.2.4(14) was failing.
It appeared the related semantics check was relying on IsPointerObject
to return true for `pointer(10)`. Adapt the code to detect pointer element
in another way.
While looking at the code, I also noticed that semantics was
rejecting `character(1)` pointer/assumed shape suboject when these are
allowed (the standard has a special case for character(1) in
15.5.2.4(14), and I verified that other compilers that enforce 15.5.2.4(14)
do accept this).
Differential Revision: https://reviews.llvm.org/D121377
Using recently established message severity codes, upgrade
non-fatal messages to usage and portability warnings as
appropriate.
Differential Revision: https://reviews.llvm.org/D121246
Add new IsCompatibleWith() member functions to many classes in evaluate::characteristics
that apply more nuanced compatibility checking for function results, dummy
arguments, and procedure interfaces than the previous tests for complete
equivalence. Use IsCompatibleWith() in semantics for call checking.
Differential Revision: https://reviews.llvm.org/D120844
An assumed-type actual argument that corresponds to an assumed-rank dummy
argument shall be assumed-shape or assumed-rank.
Differential Revision: https://reviews.llvm.org/D120750
Track source location information when available for actual arguments
to procedure references, and use this information when checking constraints
on calls so that error messages refer to specific actual arguments
rather than to the entire call.
Differential Revision: https://reviews.llvm.org/D119849
Consistent with previously documented policy, in which
BOZ literals are accepted in non-standard-conforming circumstances
where they can be converted to an unambiguous known numeric type,
allow BOZ literals to be passed as an actual argument in a reference
to a procedure whose explicit interface has a corresponding dummy
argument with a numeric type to which the BOZ literal may be
converted. Improve error messages associated with BOZ literal
actual arguments, too: don't emit multiple errors.
Differential Revision: https://reviews.llvm.org/D117698
Some kinds of Fortran arrays are declared with the same syntax,
and it is impossible to tell from a shape (:, :) or (*) whether
the object is assumed shape, deferred shape, assumed size, implied
shape, or whatever without recourse to more information about the
symbol in question. This patch softens the names of some predicate
functions (IsAssumedShape to CanBeAssumedShape) and makes others
more reflective of the syntax they represent (isAssumed to isStar)
in an attempt to encourage coders to seek and find definitive
predicate functions whose names deliver what they seem to mean.
Address TODO comments in IsSimplyContiguous() by using the
updated IsAssumedShape() predicate.
Differential Revision: https://reviews.llvm.org/D114829
Don't try to convert INTEGER argument expressions to the kind of
the dummy argument when performing generic resolution; specific
procedures may be distinguished only by their kinds.
Differential Revision: https://reviews.llvm.org/D112240
Catch additional missing error cases for typed and untyped
NULL actual arguments to non-intrinsic procedures in cases
of explicit and implicit interfaces.
Differential Revision: https://reviews.llvm.org/D110003
A procedure actual argument to a PURE procedure should be required
to have an explicit interface. Implicit-interface actual arguments
to non-PURE procedures remain a warning.
Differential Revision: https://reviews.llvm.org/D109926
When the shapes of actual arguments to ELEMENTAL procedures are
sufficiently well known during semantics, require them to conform.
Differential Revision: https://reviews.llvm.org/D109909
Improve checking for NULL() and NULL(MOLD=) when used as
variables and expressions outside the few contexts where
a disassociated pointer can be valid. There were both
inappropriate errors and missing checks.
Differential Revision: https://reviews.llvm.org/D109905
It may not be great practice to pass a procedure (or procedure pointer)
with an implicit interface as an actual argument to correspond with
a dummy procedure (pointer), but it's not an error. Change to a
warning, and modify tests accordingly.
Differential Revision: https://reviews.llvm.org/D108932
According to C7109, "A boz-literal-constant shall appear only as a
data-stmt-constant in a DATA statement, or where explicitly allowed in
16.9 as an actual argument of an intrinsic procedure." This change
enforces that constraint for output list items.
I also added a general interface to determine if an expression is a BOZ
literal constant and changed all of the places I could find where it
could be used.
I also added a test.
This change stemmed from the following issue --
https://gitlab-master.nvidia.com/fortran/f18-stage/issues/108
Differential Revision: https://reviews.llvm.org/D106893
Since BOZ literal arguments are typeless, we cannot know how to pass them as
actual arguments to procedures with implicit interfaces. This change avoids
the problem by emitting an error message in such situations.
This change stemmed from the following issue --
https://github.com/flang-compiler/f18-llvm-project/issues/794
Differential Revision: https://reviews.llvm.org/D106831
To ensure that errors are emitted by CheckConformance and
its callers in all situations, it's necessary for the returned result
of that function to distinguish between three possible
outcomes: the arrays are known to conform at compilation time,
the arrays are known to not conform (and a message has been
produced), and an indeterminate result in which is not possible
to determine conformance. So convert CheckConformance's
result into an optional<bool>, and convert its confusing
Boolean flag arguments into a bit-set of named flags too.
Differential Revision: https://reviews.llvm.org/D103654
Fortran permits a reference to a function whose result is a pointer
to be used as a definable variable in any context where a
designator could appear. This patch wrings out remaining bugs
with such usage and adds more testing.
The utility predicate IsProcedurePointer(expr) had a misleading
name which has been corrected to IsProcedurePointerTarget(expr).
Differential Revision: https://reviews.llvm.org/D98555
Analyze the shape of the result of TRANSFER(ptr,array) correctly
when "ptr" is an array of deferred shape. Fixing this bug led to
some refactoring and concentration of common code in TypeAndShape
member functions with code in general shape and character length
analysis, and this led to some regression test failures that have
all been cleaned up.
Differential Revision: https://reviews.llvm.org/D95744
It's possible to declare an external procedure and then pass it as an
actual argument to a subprogram expecting a procedure argument. I added
tests for this and added an error message to distinguish passing an
actual argument with an implicit interface from passing an argument with
a mismatched explicit interface.
Differential Revision: https://reviews.llvm.org/D94505
In some contexts, including the motivating case of determining whether
the expressions that define the shape of a variable are "constant expressions"
in the sense of the Fortran standard, expression rewriting via Fold()
is not necessary, and should not be required. The inquiry intrinsics LBOUND,
UBOUND, and SIZE work correctly now in specification expressions and are
classified correctly as being constant expressions (or not). Getting this right
led to a fair amount of API clean-up as a consequence, including the
folding of shapes and TypeAndShape objects, and new APIs for shapes
that do not fold for those cases where folding isn't needed. Further,
the symbol-testing predicate APIs in Evaluate/tools.h now all resolve any
associations of their symbols and work transparently on use-, host-, and
construct-association symbols; the tools used to resolve those associations have
been defined and documented more precisely, and their clients adjusted as needed.
Differential Revision: https://reviews.llvm.org/D94561
Internal subprograms have explicit interfaces. If an internal subprogram has
an alternate return, we check its explicit interface. But we were not
putting the label values of alternate returns into the actual argument.
I fixed this by changing the definition of actual arguments to be able
to contain a common::Label and putting the label for an alternate return
into the actual argument.
I also verified that we were already doing all of the semantic checking
required for alternate returns and removed a "TODO" for this.
I also added the test altreturn06.f90.
Differential Revision: https://reviews.llvm.org/D94017
This patch plugs many holes in static initializer semantics, improves error
messages for default initial values and other component properties in
parameterized derived type instantiations, and cleans up several small
issues noticed during development. We now do proper scalar expansion,
folding, and type, rank, and shape conformance checking for component
default initializers in derived types and PDT instantiations.
The initial values of named constants are now guaranteed to have been folded
when installed in the symbol table, and are no longer folded or
scalar-expanded at each use in expression folding. Semantics documentation
was extended with information about the various kinds of initializations
in Fortran and when each of them are processed in the compiler.
Some necessary concomitant changes have bulked this patch out a bit:
* contextual messages attachments, which are now produced for parameterized
derived type instantiations so that the user can figure out which
instance caused a problem with a component, have been added as part
of ContextualMessages, and their implementation was debugged
* several APIs in evaluate::characteristics was changed so that a FoldingContext
is passed as an argument rather than just its intrinsic procedure table;
this affected client call sites in many files
* new tools in Evaluate/check-expression.cpp to determine when an Expr
actually is a single constant value and to validate a non-pointer
variable initializer or object component default value
* shape conformance checking has additional arguments that control
whether scalar expansion is allowed
* several now-unused functions and data members noticed and removed
* several crashes and bogus errors exposed by testing this new code
were fixed
* a -fdebug-stack-trace option to enable LLVM's stack tracing on
a crash, which might be useful in the future
TL;DR: Initialization processing does more and takes place at the right
times for all of the various kinds of things that can be initialized.
Differential Review: https://reviews.llvm.org/D92783
Check INTENT(OUT)/INTENT(INOUT) constraints for actual argument
of intrinsic procedure calls.
- Adding a common::Intent field to the IntrinsicDummyArgument
in the intrinsic table.
- Propagating it to the DummyDataObject intent field so that it can
later be used in CheckExplicitDataArg semantic checks.
- Add related tests.
- Fix regression (C846 false error), C846 INTENT(OUT) rule does
not apply to intrinsic call. Propagate the information that we
are in an intrinsic call up to CheckExplicitDataArg (that is
doing this check). Still enforce C846 on intrinsics other than MOVE_ALLOC (for which
allocatable coarrays are explicitly allowed) since it's not clear it is allowed in all
intrinsics and allowing this would lead to runtime penalties in the intrinsic runtime.
Differential Revision: https://reviews.llvm.org/D89473
Calling "ASSOCATED(NULL()) was causing an internal check of the compiler to
fail.
I fixed this by changing the entry for "ASSOCIATED" in the intrinsics table to
accept "AnyPointer" which contains a new "KindCode" of "pointerType". I also
changed the function "FromActual()" to return a typeless intrinsic when called
on a pointer, which duplicates its behavior for BOZ literals. This required
changing the analysis of procedure arguments. While testing processing for
procedure arguments, I found another bad call to `CHECK()` which I fixed.
I made several other changes:
-- I implemented constant folding for ASSOCIATED().
-- I fixed handling of NULL() in relational operations.
-- I implemented semantic analysis for ASSOCIATED().
-- I noticed that the semantics for ASSOCIATED() are similar to those for
pointer assignment. So I extracted the code that pointer assignment uses
for procedure pointer compatibility to a place where it could be used by
the semantic analysis for ASSOCIATED().
-- I couldn't figure out how to make the general semantic analysis for
procedure arguments work with ASSOCIATED()'s second argument, which can
be either a pointer or a target. So I stopped using normal semantic
analysis for arguments for ASSOCIATED().
-- I added tests for all of this.
Differential Revision: https://reviews.llvm.org/D88313
CHARACTER length expressions were not always being
captured or computed as part of procedure "characteristics",
leading to test failures due to an inability to compute
memory size expressions accurately.
Differential revision: https://reviews.llvm.org/D88689
Represent FINAL subroutines in the symbol table entries of
derived types. Enforce constraints. Update tests that have
inadvertent violations or modified messages. Added a test.
The specific procedure distinguishability checking code for generics
was used to enforce distinguishability of FINAL procedures.
(Also cleaned up some confusion and redundancy noticed in the
type compatibility infrastructure while digging into that area.)
Differential revision: https://reviews.llvm.org/D88613
Implement shape analysis for the result of the MATMUL
generic transformational intrinsic function, based on
the shapes of its arguments. Correct the names of the
arguments to match the standard, too.
Reviewed By: PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D82250
Scan FORMAT strings locally to avoid C++ binary runtime dependence when computing deepest parenthesis nesting
Remove a dependency on ostream from runtime
Remove remaining direct external references from runtime to C++ library binaries
Remove runtime dependences on lib/common
SetPos() and SetRec()
Instantiate templates for input
Begin input; rearrange locking, deal with CLOSE races
View()
Update error message in test to agree with compiler change
First cut at real input
More robust I/O runtime error handling
Debugging of REAL input
Add iostat.{h,cpp}
Rename runtime/numeric-* to runtime/edit-*
Move templates around, templatize integer output editing
Move LOGICAL and CHARACTER output from io-api.cpp to edit-output.cpp
Change pointer argument to reference
More list-directed input
Complex list-directed input
Use enum class Direction rather than bool for templates
Catch up with changes to master
Undo reformatting of Lower code
Use record number instead of subscripts for internal unit
Unformatted sequential backspace
Testing and debugging
Dodge bogus GCC warning
Add <cstddef> for std::size_t to fix CI build
Address review comments
Original-commit: flang-compiler/f18@50406b3496
Reviewed-on: https://github.com/flang-compiler/f18/pull/1053
One overload of WhyNotModifiable returned an optional message while the
other returns a unique_ptr. Change the latter to be consistent with the
former and other message-returning functions in this file.
Also, reorder the if clauses to reduce the level of indentation.
Original-commit: flang-compiler/f18@864e9cfc7e
Reviewed-on: https://github.com/flang-compiler/f18/pull/1050
Tree-same-pre-rewrite: false