This is extended to all `std::` functions that take a reference to a
value and return a reference (or pointer) to that same value: `move`,
`forward`, `move_if_noexcept`, `as_const`, `addressof`, and the
libstdc++-specific function `__addressof`.
We still require these functions to be declared before they can be used,
but don't instantiate their definitions unless their addresses are
taken. Instead, code generation, constant evaluation, and static
analysis are given direct knowledge of their effect.
This change aims to reduce various costs associated with these functions
-- per-instantiation memory costs, compile time and memory costs due to
creating out-of-line copies and inlining them, code size at -O0, and so
on -- so that they are not substantially more expensive than a cast.
Most of these improvements are very small, but I measured a 3% decrease
in -O0 object file size for a simple C++ source file using the standard
library after this change.
We now automatically infer the `const` and `nothrow` attributes on these
now-builtin functions, in particular meaning that we get a warning for
an unused call to one of these functions.
In C++20 onwards, we disallow taking the addresses of these functions,
per the C++20 "addressable function" rule. In earlier language modes, a
compatibility warning is produced but the address can still be taken.
The same infrastructure is extended to the existing MSVC builtin
`__GetExceptionInfo`, which is now only recognized in namespace `std`
like it always should have been.
This is a re-commit of
fc30901096,
a571f82a50,
64c045e25b, and
de6ddaeef3,
and reverts aa643f455a.
This change also includes a workaround for users using libc++ 3.1 and
earlier (!!), as apparently happens on AIX, where std::move sometimes
returns by value.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D123345
Revert "Fixup D123950 to address revert of D123345"
This reverts commit aa643f455a.
This is sort of a followup to D37310; that basically fixed the same
issue, but then the libstdc++ implementation of <atomic> changed. Re-fix
the the issue in essentially the same way: look through the addressof
operation to find the alignment of the underlying object.
Differential Revision: https://reviews.llvm.org/D123950
Currently we emit an error in just about every case of conditionals
with a 'non simple' branch if treated as an LValue. This patch adds
support for the special case where this is an 'ignored' lvalue, which
permits the side effects from happening.
It also splits up the emit for conditional LValue in a way that should
be usable to handle simple assignment expressions in similar situations.
Differential Revision: https://reviews.llvm.org/D123680
When an inline builtin declaration is shadowed by an actual declaration, we must
reference the actual declaration, even if it's not the last, following GCC
behavior.
This fixes#54715
Differential Revision: https://reviews.llvm.org/D123308
The way the check is written is not compatible with opaque
pointers -- while we don't need to change the IR pointer type,
we do need to change the element type stored in the Address.
This requires some adjustment in caller code, because there was
a confusion regarding the meaning of the PtrTy argument: This
argument is the type of the pointer being loaded, not the addresses
being loaded from.
Reapply after fixing the specified pointer type for one call in
47eb4f7dcd, where the used type is
important for determining alignment.
This requires some adjustment in caller code, because there was
a confusion regarding the meaning of the PtrTy argument: This
argument is the type of the pointer being loaded, not the addresses
being loaded from.
This is the `ext_vector_type` alternative to D81083.
This patch extends Clang to allow 'bool' as a valid vector element type
(attribute ext_vector_type) in C/C++.
This is intended as the canonical type for SIMD masks and facilitates
clean vector intrinsic declarations. Vectors of i1 are supported on IR
level and below down to many SIMD ISAs, such as AVX512, ARM SVE (fixed
vector length) and the VE target (NEC SX-Aurora TSUBASA).
The RFC on cfe-dev: https://lists.llvm.org/pipermail/cfe-dev/2020-May/065434.html
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D88905
To make uses of the deprecated constructor easier to spot, and to
ensure that no new uses are introduced, rename it to
Address::deprecated().
While doing the rename, I've filled in element types in cases
where it was relatively obvious, but we're still left with 135
calls to the deprecated constructor.
Address space casts in general may change the element type, but
don't allow it in the method working on Address, so we can
preserve the element type.
CreatePointerBitCastOrAddrSpaceCast() still needs to be addressed.
We have the `clang -cc1` command-line option `-funwind-tables=1|2` and
the codegen option `VALUE_CODEGENOPT(UnwindTables, 2, 0) ///< Unwind
tables (1) or asynchronous unwind tables (2)`. However, this is
encoded in LLVM IR by the presence or the absence of the `uwtable`
attribute, i.e. we lose the information whether to generate want just
some unwind tables or asynchronous unwind tables.
Asynchronous unwind tables take more space in the runtime image, I'd
estimate something like 80-90% more, as the difference is adding
roughly the same number of CFI directives as for prologues, only a bit
simpler (e.g. `.cfi_offset reg, off` vs. `.cfi_restore reg`). Or even
more, if you consider tail duplication of epilogue blocks.
Asynchronous unwind tables could also restrict code generation to
having only a finite number of frame pointer adjustments (an example
of *not* having a finite number of `SP` adjustments is on AArch64 when
untagging the stack (MTE) in some cases the compiler can modify `SP`
in a loop).
Having the CFI precise up to an instruction generally also means one
cannot bundle together CFI instructions once the prologue is done,
they need to be interspersed with ordinary instructions, which means
extra `DW_CFA_advance_loc` commands, further increasing the unwind
tables size.
That is to say, async unwind tables impose a non-negligible overhead,
yet for the most common use cases (like C++ exceptions), they are not
even needed.
This patch extends the `uwtable` attribute with an optional
value:
- `uwtable` (default to `async`)
- `uwtable(sync)`, synchronous unwind tables
- `uwtable(async)`, asynchronous (instruction precise) unwind tables
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D114543
This reverts commit ef82063207.
- It conflicts with the existing llvm::size in STLExtras, which will now
never be called.
- Calling it without llvm:: breaks C++17 compat
Add an overload that accepts and returns an Address, as we
generally just want to replace the pointer with a laundered one,
while retaining remaining information.
Explicitly track the pointer element type in Address, rather than
deriving it from the pointer type, which will no longer be possible
with opaque pointers. This just adds the basic facility, for now
everything is still going through the deprecated constructors.
I had to adjust one place in the LValue implementation to satisfy
the new assertions: Global registers are represented as a
MetadataAsValue, which does not have a pointer type. We should
avoid using Address in this case.
This implements a part of D103465.
Differential Revision: https://reviews.llvm.org/D115725
at the start of the entry block, which in turn would aid better code transformation/optimization.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D110257
This implements the new implicit conversion sequence to an incomplete
(unbounded) array type. It is mostly Richard Smith's work, updated to
trunk, testcases added and a few bugs fixed found in such testing.
It is not a complete implementation of p0388.
Differential Revision: https://reviews.llvm.org/D102645
Per the GCC info page:
If the function is declared 'extern', then this definition of the
function is used only for inlining. In no case is the function
compiled as a standalone function, not even if you take its address
explicitly. Such an address becomes an external reference, as if
you had only declared the function, and had not defined it.
Respect that behavior for inline builtins: keep the original definition, and
generate a copy of the declaration suffixed by '.inline' that's only referenced
in direct call.
This fixes holes in c3717b6858.
Differential Revision: https://reviews.llvm.org/D111009
The matrix extension requires the indices for matrix subscript
expression to be valid and it is UB otherwise.
extract/insertelement produce poison if the index is invalid, which
limits the optimizer to not be bale to scalarize load/extract pairs for
example, which causes very suboptimal code to be generated when using
matrix subscript expressions with variable indices for large matrixes.
This patch updates IRGen to emit assumes to for index expression to
convey the information that the index must be valid.
This also adjusts the order in which operations are emitted slightly, so
indices & assumes are added before the load of the matrix value.
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D102478
This renames the primary methods for creating a zero value to `getZero`
instead of `getNullValue` and renames predicates like `isAllOnesValue`
to simply `isAllOnes`. This achieves two things:
1) This starts standardizing predicates across the LLVM codebase,
following (in this case) ConstantInt. The word "Value" doesn't
convey anything of merit, and is missing in some of the other things.
2) Calling an integer "null" doesn't make any sense. The original sin
here is mine and I've regretted it for years. This moves us to calling
it "zero" instead, which is correct!
APInt is widely used and I don't think anyone is keen to take massive source
breakage on anything so core, at least not all in one go. As such, this
doesn't actually delete any entrypoints, it "soft deprecates" them with a
comment.
Included in this patch are changes to a bunch of the codebase, but there are
more. We should normalize SelectionDAG and other APIs as well, which would
make the API change more mechanical.
Differential Revision: https://reviews.llvm.org/D109483
This function was defaulting to use the ABI alignment for the LLVM
type. Here we change to use the preferred alignment. This will allow
unification with GetTempAlloca, which if alignment isn't specified, uses
the preferred alignment.
Differential Revision: https://reviews.llvm.org/D108450
This renames the expression value categories from rvalue to prvalue,
keeping nomenclature consistent with C++11 onwards.
C++ has the most complicated taxonomy here, and every other language
only uses a subset of it, so it's less confusing to use the C++ names
consistently, and mentally remap to the C names when working on that
context (prvalue -> rvalue, no xvalues, etc).
Renames:
* VK_RValue -> VK_PRValue
* Expr::isRValue -> Expr::isPRValue
* SK_QualificationConversionRValue -> SK_QualificationConversionPRValue
* JSON AST Dumper Expression nodes value category: "rvalue" -> "prvalue"
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D103720
As it was discovered in post-commit feedback
for 0aa0458f14,
we handle thunks incorrectly, and end up annotating
their this/return with attributes that are valid
for their callees, not for thunks themselves.
While it would be good to fix this properly,
and keep annotating them on thunks,
i've tried doing that in https://reviews.llvm.org/D100388
with little success, and the patch is stuck for a month now.
So for now, as a stopgap measure, subj.
Commit 5baea05601 set the CurCodeDecl
because it was needed to pass the assert in CodeGenFunction::EmitLValueForLambdaField,
But this was not right to do as CodeGenFunction::FinishFunction passes it to EmitEndEHSpec
and cause corruption of the EHStack.
Revert the part of the commit that changes the CurCodeDecl, and instead
adjust the assert to check for a null CurCodeDecl.
Differential Revision: https://reviews.llvm.org/D102027
Commit e3d8ee35e4 ("reland "[DebugInfo] Support to emit debugInfo
for extern variables"") added support to emit debugInfo for
extern variables if requested by the target. Currently, only
BPF target enables this feature by default.
As BPF ecosystem grows, callback function started to get
support, e.g., recently bpf_for_each_map_elem() is introduced
(https://lwn.net/Articles/846504/) with a callback function as an
argument. In the future we may have something like below as
a demonstration of use case :
extern int do_work(int);
long bpf_helper(void *callback_fn, void *callback_ctx, ...);
long prog_main() {
struct { ... } ctx = { ... };
return bpf_helper(&do_work, &ctx, ...);
}
Basically bpf helper may have a callback function and the
callback function is defined in another file or in the kernel.
In this case, we would like to know the debuginfo types for
do_work(), so the verifier can proper verify the safety of
bpf_helper() call.
For the following example,
extern int do_work(int);
long bpf_helper(void *callback_fn);
long prog() {
return bpf_helper(&do_work);
}
Currently, there is no debuginfo generated for extern function do_work().
In the IR, we have,
...
define dso_local i64 @prog() local_unnamed_addr #0 !dbg !7 {
entry:
%call = tail call i64 @bpf_helper(i8* bitcast (i32 (i32)* @do_work to i8*)) #2, !dbg !11
ret i64 %call, !dbg !12
}
...
declare dso_local i32 @do_work(i32) #1
...
This patch added support for the above callback function use case, and
the generated IR looks like below:
...
declare !dbg !17 dso_local i32 @do_work(i32) #1
...
!17 = !DISubprogram(name: "do_work", scope: !1, file: !1, line: 1, type: !18, flags: DIFlagPrototyped, spFlags: DISPFlagOptimized, retainedNodes: !2)
!18 = !DISubroutineType(types: !19)
!19 = !{!20, !20}
!20 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
The TargetInfo.allowDebugInfoForExternalVar is renamed to
TargetInfo.allowDebugInfoForExternalRef as now it guards
both extern variable and extern function debuginfo generation.
Differential Revision: https://reviews.llvm.org/D100567