- Sadly, this doesn't seem to give any .ll size win so far. It is possible to make this routine significantly smarter & avoid various shifting, masking, and zext/sext, but I'm not really convinced it is worth it. It is tricky, and this is really instcombine's job.
- No intended functionality change; the test case is just to increase coverage & serves as a demo file, it worked before this commit.
The new fixes from r101222 are:
1. The shift to the target position needs to occur after the value is extended to the correct size. This broke Clang bootstrap, among other things no doubt.
2. Swap the order of arguments to OR, to get a tad more constant folding.
llvm-svn: 101339
Stop multiplying constant by 8 accordingly in the header and change
intrinsic definition for what types we expect.
Add to existing palignr test to check that we're emitting the correct things.
llvm-svn: 101332
- Sadly, this doesn't seem to give any .ll size win so far. It is possible to make this routine significantly smarter & avoid various shifting, masking, and zext/sext, but I'm not really convinced it is worth it. It is tricky, and this is really instcombine's job.
- No intended functionality change; the test case is just to increase coverage & serves as a demo file, it worked before this commit.
llvm-svn: 101222
- This lets the method focus slightly more on emitting clean IR to honor the policy which has been selected. On 403.gcc's combine.c, x86_64, -O0, this reduces the number of lines in the .ll file (~= # of instructions) by 2.5%.
- No intended functionality change -- at -O3 this should produce equivalent if not identical output. On 403.gcc's combine.c, x86_64, -O3, this isn't quite true and some of the changes are regressions, but I'm not going to worry about that until we move to a new access policy.
- There is still some room for improvement in the generated IR, in particular we can usually fold the sign-extension of the bit-field into one of the component access. See the FIXME.
llvm-svn: 101192
- For now, these policies are computed to match the current IRgen strategy, although the new information isn't being used yet (except in -fdump-record-layouts).
- Design comments appreciated.
llvm-svn: 101178
elements with explicit zero values instead of with tail padding.
On an example like this:
struct foo { int a; int b; };
struct foo fooarray[] = {
{1, 2},
{4},
};
We now lay this out as:
@fooarray = global [2 x %struct.foo] [%struct.foo { i32 1, i32 2 }, %struct.foo { i32 4, i32 0 }]
instead of as:
@fooarray = global %0 <{ %struct.foo { i32 1, i32 2 }, %1 { i32 4, [4 x i8] zeroinitializer } }>
Preserving both the struct type of the second element, but also the array type of the entire thing.
llvm-svn: 101155
trailing fields may not be represented in initializer lists, they
are being handled as padding and those fields *must* be zero
initialized.
llvm-svn: 101067
__cxxabiv1::__fundamental_type_info in every translation
unit. Previously, we would perform name lookup for
__cxxabiv1::__fundamental_type_info at the end of IRGen for a each
translation unit, to determine whether it was present. If so, we we
produce type information for all of the fundamental types. However,
this name lookup causes PCH deserialization of a significant part of the
translation unit, which has a woeful impact on performance.
With this change, we now look at each record type after we've
generated its vtable to see if it is
__cxxabiv1::__fundamental_type_info. If so, we generate type info for
all of the fundamental types. This works because
__cxxabiv1::__fundamental_type_info should always have a key function
(typically the virtual destructor), that will be defined once in the
support library. The fundamental type information will end up there.
Fixes <rdar://problem/7840011>.
llvm-svn: 100772