Summary:
This change adds Android support to the allocator (but doesn't yet enable it in
the cmake config), and should be the last fragment of the rewritten change
D31947.
Android has more memory constraints than other platforms, so the idea of a
unique context per thread would not have worked. The alternative chosen is to
allocate a set of contexts based on the number of cores on the machine, and
share those contexts within the threads. Contexts can be dynamically reassigned
to threads to prevent contention, based on a scheme suggested by @dvyuokv in
the initial review.
Additionally, given that Android doesn't support ELF TLS (only emutls for now),
we use the TSan TLS slot to make things faster: Scudo is mutually exclusive
with other sanitizers so this shouldn't cause any problem.
An additional change made here, is replacing `thread_local` by `THREADLOCAL`
and using the initial-exec thread model in the non-Android version to prevent
extraneous weak definition and checks on the relevant variables.
Reviewers: kcc, dvyukov, alekseyshl
Reviewed By: alekseyshl
Subscribers: srhines, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D32649
llvm-svn: 302300
Summary:
This change introduces scudo_tls.h & scudo_tls_linux.cpp, where we move the
thread local variables used by the allocator, namely the cache, quarantine
cache & prng. `ScudoThreadContext` will hold those. This patch doesn't
introduce any new platform support yet, this will be the object of a later
patch. This also changes the PRNG so that the structure can be POD.
Reviewers: kcc, dvyukov, alekseyshl
Reviewed By: dvyukov, alekseyshl
Subscribers: llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D32440
llvm-svn: 301584
Summary:
ARM & AArch64 runtime detection for hardware support of CRC32 has been added
via check of the AT_HWVAL auxiliary vector.
Following Michal's suggestions in D28417, the CRC32 code has been further
changed and looks better now. When compiled with full relro (which is strongly
suggested to benefit from additional hardening), the weak symbol for
computeHardwareCRC32 is read-only and the assembly generated is fairly clean
and straight forward. As suggested, an additional optimization is to skip
the runtime check if SSE 4.2 has been enabled globally, as opposed to only
for scudo_crc32.cpp.
scudo_crc32.h has no purpose anymore and was removed.
Reviewers: alekseyshl, kcc, rengolin, mgorny, phosek
Reviewed By: rengolin, mgorny
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D28574
llvm-svn: 292409
Summary:
As raised in D28304, enabling SSE 4.2 for the whole Scudo tree leads to the
emission of SSE 4.2 instructions everywhere, while the runtime checks only
applied to the CRC32 computing function.
This patch separates the CRC32 function taking advantage of the hardware into
its own file, and only enabled -msse4.2 for that file, if detected to be
supported by the compiler.
Another consequence of removing SSE4.2 globally is realizing that memcpy were
not being optimized, which turned out to be due to the -fno-builtin in
SANITIZER_COMMON_CFLAGS. So we now explicitely enable builtins for Scudo.
The resulting assembly looks good, with some CALLs are introduced instead of
the CRC32 code being inlined.
Reviewers: kcc, mgorny, alekseyshl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28417
llvm-svn: 291570
Disable the code appending -msse4.2 flag implicitly when the compiler
supports it. The compiler support for this flags do not indicate that
the underlying CPU will support SSE4.2, and passing it may result in
SSE4.2 code being emitted *implicitly*.
If the target platform supports SSE4.2 appropriately, the relevant bits
should be already enabled via -march= or equivalent. In this case
passing -msse4.2 is redundant.
If a runtime detection is desired (which seems to be a case with SCUDO),
then (as gcc manpage points out) the specific SSE4.2 needs to be
isolated into a separate file, the -msse4.2 flag can be forced only
for that file and the function defined in that file can only be called
when the CPU is determined to support SSE4.2.
This fixes SIGILL on SCUDO when it is compiled using gcc-5.4.
Differential Revision: https://reviews.llvm.org/D28304
llvm-svn: 291217
Summary:
This update introduces i386 support for the Scudo Hardened Allocator, and
offers software alternatives for functions that used to require hardware
specific instruction sets. This should make porting to new architectures
easier.
Among the changes:
- The chunk header has been changed to accomodate the size limitations
encountered on 32-bit architectures. We now fit everything in 64-bit. This
was achieved by storing the amount of unused bytes in an allocation rather
than the size itself, as one can be deduced from the other with the help
of the GetActuallyAllocatedSize function. As it turns out, this header can
be used for both 64 and 32 bit, and as such we dropped the requirement for
the 128-bit compare and exchange instruction support (cmpxchg16b).
- Add 32-bit support for the checksum and the PRNG functions: if the SSE 4.2
instruction set is supported, use the 32-bit CRC32 instruction, and in the
XorShift128, use a 32-bit based state instead of 64-bit.
- Add software support for CRC32: if SSE 4.2 is not supported, fallback on a
software implementation.
- Modify tests that were not 32-bit compliant, and expand them to cover more
allocation and alignment sizes. The random shuffle test has been deactivated
for linux-i386 & linux-i686 as the 32-bit sanitizer allocator doesn't
currently randomize chunks.
Reviewers: alekseyshl, kcc
Subscribers: filcab, llvm-commits, tberghammer, danalbert, srhines, mgorny, modocache
Differential Revision: https://reviews.llvm.org/D26358
llvm-svn: 288255
This patch builds on LLVM r279776.
In this patch I've done some cleanup and abstracted three common steps runtime components have in their CMakeLists files, and added a fourth.
The three steps I abstract are:
(1) Add a top-level target (i.e asan, msan, ...)
(2) Set the target properties for sorting files in IDE generators
(3) Make the compiler-rt target depend on the top-level target
The new step is to check if a command named "runtime_register_component" is defined, and to call it with the component name.
The runtime_register_component command is defined in llvm/runtimes/CMakeLists.txt, and presently just adds the component to a list of sub-components, which later gets used to generate target mappings.
With this patch a new workflow for runtimes builds is supported. The new workflow when building runtimes from the LLVM runtimes directory is:
> cmake [...]
> ninja runtimes-configure
> ninja asan
The "runtimes-configure" target builds all the dependencies for configuring the runtimes projects, and runs CMake on the runtimes projects. Running the runtimes CMake generates a list of targets to bind into the top-level CMake so subsequent build invocations will have access to some of Compiler-RT's targets through the top-level build.
Note: This patch does exclude some top-level targets from compiler-rt libraries because they either don't install files (sanitizer_common), or don't have a cooresponding `check` target (stats).
llvm-svn: 279863
Summary:
This patch is a refactoring of the way cmake 'targets' are grouped.
It won't affect non-UI cmake-generators.
Clang/LLVM are using a structured way to group targets which ease
navigation through Visual Studio UI. The Compiler-RT projects
differ from the way Clang/LLVM are grouping targets.
This patch doesn't contain behavior changes.
Reviewers: kubabrecka, rnk
Subscribers: wang0109, llvm-commits, kubabrecka, chrisha
Differential Revision: http://reviews.llvm.org/D21952
llvm-svn: 275111
Summary:
This is an initial implementation of a Hardened Allocator based on Sanitizer Common's CombinedAllocator.
It aims at mitigating heap based vulnerabilities by adding several features to the base allocator, while staying relatively fast.
The following were implemented:
- additional consistency checks on the allocation function parameters and on the heap chunks;
- use of checksum protected chunk header, to detect corruption;
- randomness to the allocator base;
- delayed freelist (quarantine), to mitigate use after free and overall determinism.
Additional mitigations are in the works.
Reviewers: eugenis, aizatsky, pcc, krasin, vitalybuka, glider, dvyukov, kcc
Subscribers: kubabrecka, filcab, llvm-commits
Differential Revision: http://reviews.llvm.org/D20084
llvm-svn: 271968