r zero scale SMULFIX, expand into MUL which produces better code for X86.
For vector arguments, expand into MUL if SMULFIX is provided with a zero scale.
Otherwise, expand into MULH[US] or [US]MUL_LOHI.
Differential Revision: https://reviews.llvm.org/D56987
llvm-svn: 352783
This ensures that if we make it to the backend w/o lowering widenable_conditions first, that we generate correct code. Doing it in CGP - instead of isel - let's us fold control flow before hitting block local instruction selection.
Differential Revision: https://reviews.llvm.org/D57473
llvm-svn: 352779
Similar to what we already do in DAGCombiner, but this version also handles bitcasts from types with different scalar sizes, which x86 is better at handling.
Differential Revision: https://reviews.llvm.org/D57514
llvm-svn: 352773
Summary:
Include the symbol being defined in the list of requirements for using --localize-symbol.
This is used, for example, when someone is depending on two different projects that have the same (or close enough) method defined in each library, and using "-L sym" for a conflicting symbol in one of the libraries so that the definition from the other one is used. However, the library may have internal references to the symbol, which cause program crashes when those are used, i.e.:
```
$ cat foo.c
int foo() { return 5; }
$ cat bar.c
int foo();
int bar() { return 2 * foo(); }
$ cat foo2.c
int foo() { /* Safer implementation */ return 42; }
$ cat main.c
int bar();
int main() {
__builtin_printf("bar = %d\n", bar());
return 0;
}
$ ar rcs libfoo.a foo.o bar.o
$ ar rcs libfoo2.a foo2.o
# Picks the wrong foo() impl
$ clang main.o -lfoo -lfoo2 -L. -o main
# Picks the right foo() impl
$ objcopy -L foo libfoo.a && clang main.o -lfoo -lfoo2 -L. -o main
# Links somehow, but crashes at runtime
$ llvm-objcopy -L foo libfoo.a && clang main.o -lfoo -lfoo2 -L. -o main
```
Reviewers: jhenderson, alexshap, jakehehrlich, espindola
Subscribers: emaste, arichardson
Differential Revision: https://reviews.llvm.org/D57417
llvm-svn: 352767
This is the most important uaddo problem mentioned in PR31754:
https://bugs.llvm.org/show_bug.cgi?id=31754
We were failing to match the canonicalized pattern when it's an 'add 1' operation.
Pattern matching, however, shouldn't assume that we have canonicalized IR, so we
match 4 commuted variants of uaddo.
There's also a test with a crazy type to show that the existing CGP transform
based on this matcher is not limited by target legality checks, but that's a
different problem.
Differential Revision: https://reviews.llvm.org/D57516
llvm-svn: 352766
Summary:
COFF requires that COMDAT name match that of the leader. When we promote
and rename an internal leader in ThinLTO due to an import, ensure we
subsequently rename the associated COMDAT. Similar to D31963 which did
this during ThinLTO module splitting.
Fixes PR40414.
Reviewers: pcc, inglorion
Subscribers: mehdi_amini, dexonsmith, dmajor, llvm-commits
Differential Revision: https://reviews.llvm.org/D57395
llvm-svn: 352763
This is the fourth (and final for now) of a series of patches
simplifying llvm-symbolizer tests. See r352752, r352753 and 352754 for
the previous ones. This patch splits out several more distinct test
cases from llvm-symbolizer.test into separate tests, and simplifies them
in various ways including:
1) Building a test case for spaces in path from source, rather than
using a pre-canned binary. This allows deleting of said binary and the
source it was built from.
2) Switching to specifying addresses and objects directly on the
command-line rather than via stdin.
This also adds an explict test for the ability to specify a file and
address as a line in stdin, since the majority of the tests have been
migrated away from this approach, leaving this largely untested.
Reviewed by: dblaikie
Differential Revision: https://reviews.llvm.org/D57446
llvm-svn: 352756
This is the third of a series of patches simplifying llvm-symbolizer
tests. See r352752 and r352753 for the previous two. This patch splits
out a number of distinct test cases from llvm-symbolizer.test into
separate tests, and simplifies them in various ways including:
1) using --obj/positional arguments for the input file and addresses
instead of stdin,
2) using runtime-generated inputs rather than a pre-canned binary, and
3) testing more specifically (i.e. checking only what is interesting to
the behaviour changed in the original commit for that test case).
This patch also removes the test case for using --obj. The
tools/llvm-symbolizer/basic.s test already tests this case. Finally,
this patch adds a simple test case to the demangle switch test case to
show that demangling happens by default.
See https://bugs.llvm.org/show_bug.cgi?id=40070#c1 for the motivation.
Reviewed by: dblaikie
Differential Revision: https://reviews.llvm.org/D57446
llvm-svn: 352754
This is the second of a series of patches simplifying llvm-symbolizer
tests. See r352752 for the first. This one splits out 5 distinct test
cases from llvm-symbolizer.test into separate tests, and simplifies them
slightly by using --obj/positional arguments for the input file and
addresses instead of stdin.
See https://bugs.llvm.org/show_bug.cgi?id=40070#c1 for the motivation.
Reviewed by: dblaikie
Differential Revision: https://reviews.llvm.org/D57443
llvm-svn: 352753
This change migrates most llvm-symbolizer tests away from reading input
via stdin and instead using --obj + positional arguments for the file
and addresses respectively, which makes the tests easier to read.
One exception is the test test/tools/llvm-symbolizer/pdb/pdb.test, which
was doing some manipulation on the input addresses. This patch
simplifies this somewhat, but it still reads from stdin.
More changes to follow to simplify/break-up other tests.
Reviewed by: dblaikie
Differential Revision: https://reviews.llvm.org/D57441
llvm-svn: 352752
Enables 32/64-bit scalar load broadcasts on AVX1 targets
The extractelement-load.ll regression will be fixed shortly in a followup commit.
llvm-svn: 352743
If we're not inserting the broadcast into the lowest subvector then we can avoid the insertion by just performing a larger broadcast.
Avoids a regression when we enable AVX1 broadcasts in shuffle combining
llvm-svn: 352742
Introduces a pass that provides default lowering strategy for the
`experimental.widenable.condition` intrinsic, replacing all its uses with
`i1 true`.
Differential Revision: https://reviews.llvm.org/D56096
Reviewed By: reames
llvm-svn: 352739
Constants can also be materialised using the negated value and a MVN, and this
case seem to have been missed for Thumb2. To check the constant materialisation
costs, we now call getT2SOImmVal twice, once for the original constant and then
also for its negated value, and this function checks if the constant can both
be splatted or rotated.
This was revealed by a test that optimises for minsize: instead of a LDR
literal pool load and having a literal pool entry, just a MVN with an immediate
is smaller (and also faster).
Differential Revision: https://reviews.llvm.org/D57327
llvm-svn: 352737
And instead just generate a libcall. My motivating example on ARM was a simple:
shl i64 %A, %B
for which the code bloat is quite significant. For other targets that also
accept __int128/i128 such as AArch64 and X86, it is also beneficial for these
cases to generate a libcall when optimising for minsize. On these 64-bit targets,
the 64-bits shifts are of course unaffected because the SHIFT/SHIFT_PARTS
lowering operation action is not set to custom/expand.
Differential Revision: https://reviews.llvm.org/D57386
llvm-svn: 352736
On Unix/Mac OS X, normpath() returns the path unchanged (FileCheck), but
on case-insensitive filesystems (like NTFS on Windows), it converts the
path to lowercase (filecheck) which was causing the test to fail.
llvm-svn: 352735
Currently SCEV attempts to limit transformations so that they do not work with
big SCEVs (that may take almost infinite compile time). But for this, it uses heuristics
such as recursion depth and number of operands, which do not give us a guarantee
that we don't actually have big SCEVs. This situation is still possible, though it is not
likely to happen. However, the bug PR33494 showed a bunch of simple corner case
tests where we still produce huge SCEVs, even not reaching big recursion depth etc.
This patch introduces a concept of 'huge' SCEVs. A SCEV is huge if its expression
size (intoduced in D35989) exceeds some threshold value. We prohibit optimizing
transformations if any of SCEVs we are dealing with is huge. This gives us a reliable
check that we don't spend too much time working with them.
As the next step, we can possibly get rid of old limiting mechanisms, such as recursion
depth thresholds.
Differential Revision: https://reviews.llvm.org/D35990
Reviewed By: reames
llvm-svn: 352728
This change reverts r351626.
The changes in r351626 cause quadratic work in several cases. (See r351626 thread on llvm-commits for details.)
llvm-svn: 352722
Summary:
Fixes PR40267, in which the removed assertion was triggering on
perfectly valid IR. As far as I can tell, constant out of bounds
indices should be allowed when splitting extract_vector_elt, since
they will simply be propagated as out of bounds indices in the
resulting split vector and handled appropriately elsewhere.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya
Differential Revision: https://reviews.llvm.org/D57471
llvm-svn: 352702
This teaches the legalizer to handle G_FEXP in AArch64. As a result, it also
allows us to select G_FEXP.
It...
- Updates the legalizer-info tests
- Adds a test for legalizing exp
- Updates the existing fp tests to show that we can now select G_FEXP
https://reviews.llvm.org/D57483
llvm-svn: 352692
This adds instruction selection support for G_FABS in AArch64. It also updates
the existing basic FP tests, adds a selection test for G_FABS.
https://reviews.llvm.org/D57418
llvm-svn: 352684
Summary:
After the staack is unwound due to a thrown exxception,
`__stack_pointer` global can point to an invalid address. So
a `global.set` to restore `__stack_pointer` should be inserted right
after `catch` instruction.
But after r352598 the `global.set` instruction is inserted not right
after `catch` but after `block` - `br-on-exn` - `end_block` -
`extract_exception` sequence. This CL fixes it.
While doing that, we can actually move ReplacePhysRegs pass after
LateEHPrepare and merge EHRestoreStackPointer pass into LateEHPrepare,
and now placing `global.set` to `__stack_pointer` right after `catch` is
much easier. Otherwise it is hard to guarantee that `global.set` is
still right after `catch` and not touched with other transformations, in
which case we have to do something to hoist it.
Reviewers: dschuff
Subscribers: mgorny, sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D57421
llvm-svn: 352681
This extends the existing transform for:
add X, 0/1 --> sub X, 0/-1
...to allow the sibling subtraction fold.
This pattern could regress with the proposed change in D57401.
llvm-svn: 352680
This teaches GlobalISel to emit a RTLib call for @llvm.log2 when it encounters
it.
It updates the existing floating point tests to show that we don't fall back on
the intrinsic, and select the correct instructions. It also adds a legalizer
test for G_FLOG2.
https://reviews.llvm.org/D57357
llvm-svn: 352673
This teaches the legalizer about G_FSQRT in AArch64. Also adds a legalizer
test for G_FSQRT, a selection test for it, and updates existing floating point
tests.
https://reviews.llvm.org/D57361
llvm-svn: 352671
This introduces a generic instruction for computing the floating point
square root of a value.
Right now, we can't select @llvm.sqrt, so this is working towards fixing that.
llvm-svn: 352668