of: a + b ? x : y. In our testing of this flag we've yet to hit a single
case where the existing precedence was correct, so we should suggest
grouping the ?: first.
llvm-svn: 133526
MaterializeTemporaryExpr captures a reference binding to a temporary
value, making explicit that the temporary value (a prvalue) needs to
be materialized into memory so that its address can be used. The
intended AST invariant here is that a reference will always bind to a
glvalue, and MaterializeTemporaryExpr will be used to convert prvalues
into glvalues for that binding to happen. For example, given
const int& r = 1.0;
The initializer of "r" will be a MaterializeTemporaryExpr whose
subexpression is an implicit conversion from the double literal "1.0"
to an integer value.
IR generation benefits most from this new node, since it was
previously guessing (badly) when to materialize temporaries for the
purposes of reference binding. There are likely more refactoring and
cleanups we could perform there, but the introduction of
MaterializeTemporaryExpr fixes PR9565, a case where IR generation
would effectively bind a const reference directly to a bitfield in a
struct. Addresses <rdar://problem/9552231>.
llvm-svn: 133521
1. (((x) & 0xFF00) >> 8) | (((x) & 0x00FF) << 8)
=> (bswap x) >> 16
2. ((x&0xff)<<8)|((x&0xff00)>>8)|((x&0xff000000)>>8)|((x&0x00ff0000)<<8))
=> (rotl (bswap x) 16)
This allows us to eliminate most of the def : Pat patterns for ARM rev16
revsh instructions. It catches many more cases for ARM and x86.
rdar://9609108
llvm-svn: 133503
ops.
This is a rewrite of the IV simplification algorithm used by
-disable-iv-rewrite. To avoid perturbing the default mode, I
temporarily split the driver and created SimplifyIVUsersNoRewrite. The
idea is to avoid doing opcode/pattern matching inside
IndVarSimplify. SCEV already does it. We want to optimize with the
full generality of SCEV, but optimize def-use chains top down on-demand rather
than rewriting the entire expression bottom-up. This was easy to do
for operations that SCEV can prove are identity function. So we're now
eliminating bitmasks and zero extends this way.
A result of this rewrite is that indvars -disable-iv-rewrite no longer
requires IVUsers.
llvm-svn: 133502
while back. By default its output will be less verbose than the
old examine-threads.c but adding the '-v' command line flag will
give all the information that examine-threads.c provided plus some.
Of note, this implementation can take a process name -- and it will
use the libproc API so it can match program names longer than 16
characters.
llvm-svn: 133500
if not already specified by the test driver (via ./dotest -w). Remove the AbstractBase.setUp()
method definition when/if we find out the cause of the failures if no delays are inserted
between these test cases.
llvm-svn: 133495
an assembly file it worked correctly, while for a .c file it would given an
error about how --noexecstack is not a supported argument to -Wa.
llvm-svn: 133489
We still have the the issue where running:
./dotest.py -v types
we have test failures where the inferior either runs to exited with status 0 or
the inferior stops but not because of breakpoint (for example):
runCmd: process status
output: Process 90060 stopped
* thread #1: tid = 0x2d03, 0x000000010000e2ca, stop reason = EXC_BAD_ACCESS (code=2, address=0x10000e2ca)
frame #0: 0x000000010000e2ca
There are two cases where the inferior stops for the breakpoint (good), but the expression parser
prints out the wrong information. The two failures are:
Failure-TestFloatTypesExpr.FloatTypesExprTestCase.test_double_type_with_dsym.log
Failure-TestFloatTypesExpr.FloatTypesExprTestCase.test_double_type_with_dwarf.log
I'll file a radar on the two expression parser misbehave, while continue investigating why the
inferior stops for the wrong reason or does not stop at all.
For now, you'll need to do:
./dotest.py -v -w types
llvm-svn: 133488
after initial construction.
There are two exceptions to the above general rules, though; the API objects are
SBCommadnReturnObject and SBStream.
llvm-svn: 133475