These IR instructions are undefined when the amount is equal to operand
size, but NEON right shifts support such shifts. Work around that by
emitting a different IR in these cases.
llvm-svn: 191953
CodeGenTypes already has a reference to a CGCXXABI. Use this directly
rather than going through CodeGenModule to get to the same information.
This is consistent with other references to CGCXXABI in CodeGenTypes
functions defined in CGCall.cpp.
llvm-svn: 191854
This attribute allows users to use a modified C or C++ function as an ARM
exception-handling function and, with care, to successfully return control to
user-space after the issue has been dealt with.
rdar://problem/14207019
llvm-svn: 191769
The general strategy is to create template versions of the conversion function and static invoker and then during template argument deduction of the conversion function, create the corresponding call-operator and static invoker specializations, and when the conversion function is marked referenced generate the body of the conversion function using the corresponding static-invoker specialization. Similarly, Codegen does something similar - when asked to emit the IR for a specialized static invoker of a generic lambda, it forwards emission to the corresponding call operator.
This patch has been reviewed in person both by Doug and Richard. Richard gave me the LGTM.
A few minor changes:
- per Richard's request i added a simple check to gracefully inform that captures (init, explicit or default) have not been added to generic lambdas just yet (instead of the assertion violation).
- I removed a few lines of code that added the call operators instantiated parameters to the currentinstantiationscope. Not only did it not handle parameter packs, but it is more relevant in the patch for nested lambdas which will follow this one, and fix that problem more comprehensively.
- Doug had commented that the original implementation strategy of using the TypeSourceInfo of the call operator to create the static-invoker was flawed and allowed const as a member qualifier to creep into the type of the static-invoker. I currently kludge around it - but after my initial discussion with Doug, with a follow up session with Richard, I have added a FIXME so that a more elegant solution that involves the use of TrivialTypeSourceInfo call followed by the correct wiring of the template parameters to the functionprototypeloc is forthcoming.
Thanks!
llvm-svn: 191634
The intent of getTypeOperand() was to yield an unqualified type.
However QualType::getUnqualifiedType() does not strip away qualifiers on
arrays.
N.B. This worked fine when typeid() was applied to an expression
because we would inject as implicit cast to the unqualified array type
in the AST.
llvm-svn: 191487
Specifically, the following features are not included in this commit:
- any sort of capturing within generic lambdas
- generic lambdas within template functions and nested
within other generic lambdas
- conversion operator for captureless lambdas
- ensuring all visitors are generic lambda aware
(Although I have gotten some useful feedback on my patches of the above and will be incorporating that as I submit those patches for commit)
As an example of what compiles through this commit:
template <class F1, class F2>
struct overload : F1, F2 {
using F1::operator();
using F2::operator();
overload(F1 f1, F2 f2) : F1(f1), F2(f2) { }
};
auto Recursive = [](auto Self, auto h, auto ... rest) {
return 1 + Self(Self, rest...);
};
auto Base = [](auto Self, auto h) {
return 1;
};
overload<decltype(Base), decltype(Recursive)> O(Base, Recursive);
int num_params = O(O, 5, 3, "abc", 3.14, 'a');
Please see attached tests for more examples.
This patch has been reviewed by Doug and Richard. Minor changes (non-functionality affecting) have been made since both of them formally looked at it, but the changes involve removal of supernumerary return type deduction changes (since they are now redundant, with richard having committed a recent patch to address return type deduction for C++11 lambdas using C++14 semantics).
Some implementation notes:
- Add a new Declarator context => LambdaExprParameterContext to
clang::Declarator to allow the use of 'auto' in declaring generic
lambda parameters
- Add various helpers to CXXRecordDecl to facilitate identifying
and querying a closure class
- LambdaScopeInfo (which maintains the current lambda's Sema state)
was augmented to house the current depth of the template being
parsed (id est the Parser calls Sema::RecordParsingTemplateParameterDepth)
so that SemaType.cpp::ConvertDeclSpecToType may use it to immediately
generate a template-parameter-type when 'auto' is parsed in a generic
lambda parameter context. (i.e we do NOT use AutoType deduced to
a template parameter type - Richard seemed ok with this approach).
We encode that this template type was generated from an auto by simply
adding $auto to the name which can be used for better diagnostics if needed.
- SemaLambda.h was added to hold some common lambda utility
functions (this file is likely to grow ...)
- Teach Sema::ActOnStartOfFunctionDef to check whether it
is being called to instantiate a generic lambda's call
operator, and if so, push an appropriately prepared
LambdaScopeInfo object on the stack.
- various tests were added - but much more will be needed.
There is obviously more work to be done, and both Richard (weakly) and Doug (strongly)
have requested that LambdaExpr be removed form the CXXRecordDecl LambdaDefinitionaData
in a future patch which is forthcoming.
A greatful thanks to all reviewers including Eli Friedman, James Dennett,
and especially the two gracious wizards (Richard Smith and Doug Gregor)
who spent hours providing feedback (in person in Chicago and on the mailing lists).
And yet I am certain that I have allowed unidentified bugs to creep in; bugs, that I will do my best to slay, once identified!
Thanks!
llvm-svn: 191453
Patch by Ana Pazos.
1.Added support for v1ix and v1fx types.
2.Added Scalar Pairwise Reduce instructions.
3.Added initial implementation of Scalar Arithmetic instructions.
llvm-svn: 191264
LLVM supports applying conversion instructions to vectors of the same number of
elements (fptrunc, fptosi, etc.) but there had been no way for a Clang user to
cause such instructions to be generated when using builtin vector types.
C-style casting on vectors is already defined in terms of bitcasts, and so
cannot be used for these conversions as well (without leading to a very
confusing set of semantics). As a result, this adds a __builtin_convertvector
intrinsic (patterned after the OpenCL __builtin_astype intrinsic). This is
intended to aid the creation of vector intrinsic headers that create generic IR
instead of target-dependent intrinsics (in other words, this is a generic
_mm_cvtepi32_ps). As noted in the documentation, the action of
__builtin_convertvector is defined in terms of the action of a C-style cast on
each vector element.
llvm-svn: 190915
GCC ToT doesn't do this & it's worth about 3.2% on Clang's DWO file size
with Clang. Some or all of this may be due to things like r190715 which
could have source fixes/improvements, but it's not clear that's the case
and that doesn't help other source bases.
llvm-svn: 190716
This restores the sqrt -> llvm.sqrt mapping, but only in fast-math mode
(specifically, when the UnsafeFPMath or NoNaNsFPMath CodeGen options are
enabled). The @llvm.sqrt* intrinsics have slightly different semantics from the
libm call, specifically, they are undefined when given a non-zero negative
number (the libm calls will always return NaN for any negative number).
This mapping was removed in r100613, and replaced with a TODO, but at that time
the fast-math flags were not yet implemented. Now that we have these, restoring
this mapping is important because it will enable autovectorization of sqrt
calls in loops (at least in fast-math mode).
llvm-svn: 190646
The code in CGExpr was added back in 2012 (r165536) but not exercised in tests
until recently.
Detected on the MemorySanitizer bootstrap bot.
llvm-svn: 190521
Static locals requiring initialization are not thread safe on Windows.
Unfortunately, it's possible to create static locals that are actually
externally visible with inline functions and templates. As a result, we
have to implement an initialization guard scheme that is compatible with
TUs built by MSVC, which makes thread safety prohibitively difficult.
MSVC's scheme is that every function that requires a guard gets an i32
bitfield. Each static local is assigned a bit that indicates if it has
been initialized, up to 32 bits, at which point a new bitfield is
created. MSVC rejects inline functions with more than 32 static locals,
and the externally visible mangling (?_B) only allows for one guard
variable per function.
On Eli's recommendation, I used MangleNumberingContext to track which
bit each static corresponds to.
Implements PR16888.
Reviewers: rjmccall, eli.friedman
Differential Revision: http://llvm-reviews.chandlerc.com/D1416
llvm-svn: 190427
By removing the possibility of strange partial definitions with no
members that older GCC's produced for the otherwise unreferenced outer
types of referenced inner types, we can simplify debug info generation
and correct this bug. Newer (4.8.1 and ToT) GCC's don't produce this
quirky debug info, and instead produce the full definition for the outer
type (except in the case where that type is dynamic and its vtable is
not emitted in this TU).
During the creation of the context for a type, we may revisit that type
(due to the need to visit template parameters, among other things) and
used to end up visiting it first there. Then when we would reach the
original code attempting to define that type, we would lose debug info
by overwriting its members.
By avoiding the possibility of latent "defined with no members" types,
we can be sure than whenever we already have a type in a cache (either a
definition or declaration), we can just return that. In the case of a
full definition, our work is done. In the case of a partial definition,
we must already be in the process of completing it. And in the case of a
declaration, the completed/vtable/etc callbacks can handle converting it
to a definition.
llvm-svn: 190122
Debug info emission was tripping over an IRGen bug (fixed in r189996)
that was resulting in duplicate emission of static data members of class
templates in namespaces.
We could add more test coverage to debug info for this issue
specifically, but I think the underlying IRGen test is more targeted and
sufficient for the issue.
llvm-svn: 190001
A quirk of AST representation leads to class template static data member
definitions being visited twice during Clang IRGen resulting in
duplicate (benign) initializers.
Discovered while investigating a possibly-related debug info bug tickled
by the duplicate emission of these members & their associated debug
info.
With thanks to Richard Smith for help investigating, understanding, and
helping with the fix.
llvm-svn: 189996
I tried to implement this properly in r189051, but I didn't have enough
test coverage. Richard kindly provided more test cases than I could
possibly imagine and now we should have the correct condition.
llvm-svn: 189898
This fixes pr13124.
From the discussion at
http://lists.cs.uiuc.edu/pipermail/cfe-dev/2012-June/022606.html
we know that we cannot make funcions in a weak_odr vtable also weak_odr. They
should remain linkonce_odr.
The side effect is that we cannot emit a available_externally vtable unless we
also emit a copy of the function. This also has an issue: If codegen is going
to output a function, sema has to mark it used. Given llvm.org/pr9114, it looks
like sema cannot be more aggressive at marking functions used because
of vtables.
This leaves us with a few unpleasant options:
* Marking functions in vtables used if possible. This sounds a bit sloppy, so
we should avoid it.
* Producing available_externally vtables only when all the functions in it are
already used or weak_odr. This would cover cases like
--------------------
struct foo {
virtual ~foo();
};
struct bar : public foo {
virtual void zed();
};
void f() {
foo *x(new bar);
delete x;
}
void g(bar *x) {
x->~bar(); // force the destructor to be used
}
--------------------------
and
----------------------------------
template<typename T>
struct bar {
virtual ~bar();
};
template<typename T>
bar<T>::~bar() {
}
// make the destructor weak_odr instead of linkonce_odr
extern template class bar<int>;
void f() {
bar<int> *x(new bar<int>);
delete x;
}
----------------------------
These look like corner cases, so it is unclear if it is worth it.
* And finally: Just nuke this optimization. That is what this patch implements.
llvm-svn: 189852
We use CXX mangler to generate unique identifier for external C++ struct,
union, class and enum. Types with unique identifier are added to retained
types by DIBuilder.
Testing cases are updated to reflect the unique identifier generated for types.
The order of MDNodes is changed because of retained types and testing cases
are updated accordingly.
Testing case debug-info-uuid.cpp now emits error with Itanium mangler, since
uuid is not yet handled in Itanium mangler. And it will check for the error
message.
llvm-svn: 189622
We had further discussions on how to retain types, whether to do it in front end
or in DIBuilder. And we agree to do it in DIBuilder so front ends
generating unique identifier do not need to worry about retaining them.
llvm-svn: 189609
We use CXX mangler to generate unique identifier for external C++ struct,
union, class and enum. Types with unique identifier are added to RetainedTypes
to make sure they are treated as used even when all uses are replaced with
the identifiers.
A single type can be added to RetainedTypes multiple times. For example, both
createForwardDecl and createLimitedType can add the same type to RetainedTypes.
A set is used to avoid duplication when updating AllRetainTypes in DIBuilder.
Testing cases are updated to reflect the unique identifier generated for types.
The order of MDNodes is changed because of retained types and testing cases
are updated accordingly.
Testing case debug-info-uuid.cpp now emits error with Itanium mangler, since
uuid is not yet handled in Itanium mangler.
We choose to update RetainedTypes in clang, then at finalize(), we update
AllRetainTypes in DIBuilder. The other choice is to update AllRetainTypes
in DIBuilder when creating a DICompositeType with unique identifier. This
option requires using ValueHandle for AllRetainTypes in DIBuilder since
the created DICompositeType can be modified later on by setContainingType etc.
llvm-svn: 189600
Both functions will take a Type pointer instead of a Decl pointer. This helps
with follow-up type uniquing patches, which need the Type pointer to call
CXX mangler to generate unique identifiers.
No functionality change.
llvm-svn: 189519
In the transition from declaration (with some members) to definition, we
were overwriting the list of members with the empty list when attaching
template parameters.
The fix is in llvm::DICompositeType::addMember (along with asserts that
cause this bug to be covered by existing Clang test cases), including
adding some asserts to catch this sort of issue which found issues fixed
in this commit.
llvm-svn: 189494
These operations "vector add high-half narrow" actually correspond to the
sequence:
%sum = add <4 x i32> %lhs, %rhs
%high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
%res = trunc <4 x i32> %high to <4 x i16>
Now that LLVM can spot this, Clang should emit the corresponding LLVM IR.
llvm-svn: 189463
The NEON intrinsics vqdmlal and vqdmlsl are really just combinations of a
saturating-doubling-multiply (vqdmull) and a saturating add/sub, so now that
LLVM can spot those patterns Clang should emit them instead of specialised
intrinsics.
Feature already tested by existing ARM NEON intrinsics tests.
llvm-svn: 189462
This reverts commit r189320.
Alexey Samsonov and Dmitry Vyukov presented some arguments for keeping
these around - though it still seems like those tasks could be solved by
a tool just using the symbol table. In a very small number of cases,
thunks may be inlined & debug info might be able to save profilers &
similar tools from misclassifying those cases as part of the caller.
The extra changes here plumb through the VarDecl for various cases to
CodeGenFunction - this provides better fidelity through a few APIs but
generally just causes the CGF::StartFunction to fallback to using the
name of the IR function as the name in the debug info.
The changes to debug-info-global-ctor-dtor.cpp seem like goodness. The
two names that go missing (in favor of only emitting those names as
linkage names) are names that can be demangled - emitting them only as
the linkage name should encourage tools to do just that.
Again, thanks to Dinesh Dwivedi for investigation/work on this issue.
llvm-svn: 189421
Summary:
Makes functions with implicit calling convention compatible with
function types with a matching explicit calling convention. This fixes
things like calls to qsort(), which has an explicit __cdecl attribute on
the comparator in Windows headers.
Clang will now infer the calling convention from the declarator. There
are two cases when the CC must be adjusted during redeclaration:
1. When defining a non-inline static method.
2. When redeclaring a function with an implicit or mismatched
convention.
Fixes PR13457, and allows clang to compile CommandLine.cpp for the
Microsoft C++ ABI.
Excellent test cases provided by Alexander Zinenko!
Reviewers: rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D1231
llvm-svn: 189412
This was added in r166676 based on PR13942 on the basis that tools may
need debug information for any executable code/function for some fairly
broad/non-specific purposes. It seems to me (as noted in PR14569) that
the major/only purpose is in backtraces, which should generally not
apply to thunks as they won't appear in the stack themselves. By
removing them we fix PR14569 and reduce the size of Clang's debug info.
Strangely enough this doesn't seem to have a substantial impact on
Clang's self-hosted debug info (at least looking at DWO file size) size
at all. Not sure if I failed to test this correctly but I only observed
a 0.004% change in DWO file size over Clang+LLVM.
With thanks to Dinesh Dwivedi for work on this PR.
llvm-svn: 189320
CodeGenFunction is run on only one function - a new object is made for
each new function. I would add an assertion/flag to this effect, but
there's an exception: ObjC properties involve emitting helper functions
that are all emitted by the same CodeGenFunction object, so such a check
is not possible/correct.
llvm-svn: 189277
- __func__ or __FUNCTION__ returns captured statement's parent
function name, not the one compiler generated.
Differential Revision: http://llvm-reviews.chandlerc.com/D1491
Reviewed by bkramer
llvm-svn: 189219
They were mostly copy&paste of each other, move it to CodeGenFunction. Of course
the two implementations have diverged over time; the one in CGExprCXX seems to
be the more modern one so I picked that one and moved it to CGClass which feels
like a better home for it. No intended functionality change.
llvm-svn: 189203
Summary:
Previously the backend wouldn't get to see the underlying GlobalValue
that corresponds to the template argument because it would be hidden by
a cast at the IR level. Instead strip the pointer casts off of the
value until we see the underlying GlobalValue.
Reviewers: dblaikie, echristo, majnemer
Reviewed By: majnemer
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1508
llvm-svn: 189200
Summary:
This allows us to handle the general case where a non-type template
argument evaluates to a constant expression which isn't integral or a
declaration.
This fixes PR16939.
Reviewers: dblaikie, rsmith
Reviewed By: dblaikie
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1453
llvm-svn: 189165
Summary:
These typically come from static data members of class template
specializations. This accomplishes two things:
1. May expose GlobalOpt optimizations for Itanium C++ ABI code.
2. Works toward fixing double initialization in the Microsoft C++ ABI.
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1475
llvm-svn: 189051
This might be able to be optimized further by only doing this in the
absence of a key function, but it doesn't look like GCC is doing that so
I'm not rushing to do it just yet.
llvm-svn: 189022
Specifically, the following features are not included in this commit:
- any sort of capturing within generic lambdas
- nested lambdas
- conversion operator for captureless lambdas
- ensuring all visitors are generic lambda aware
As an example of what compiles:
template <class F1, class F2>
struct overload : F1, F2 {
using F1::operator();
using F2::operator();
overload(F1 f1, F2 f2) : F1(f1), F2(f2) { }
};
auto Recursive = [](auto Self, auto h, auto ... rest) {
return 1 + Self(Self, rest...);
};
auto Base = [](auto Self, auto h) {
return 1;
};
overload<decltype(Base), decltype(Recursive)> O(Base, Recursive);
int num_params = O(O, 5, 3, "abc", 3.14, 'a');
Please see attached tests for more examples.
Some implementation notes:
- Add a new Declarator context => LambdaExprParameterContext to
clang::Declarator to allow the use of 'auto' in declaring generic
lambda parameters
- Augment AutoType's constructor (similar to how variadic
template-type-parameters ala TemplateTypeParmDecl are implemented) to
accept an IsParameterPack to encode a generic lambda parameter pack.
- Add various helpers to CXXRecordDecl to facilitate identifying
and querying a closure class
- LambdaScopeInfo (which maintains the current lambda's Sema state)
was augmented to house the current depth of the template being
parsed (id est the Parser calls Sema::RecordParsingTemplateParameterDepth)
so that Sema::ActOnLambdaAutoParameter may use it to create the
appropriate list of corresponding TemplateTypeParmDecl for each
auto parameter identified within the generic lambda (also stored
within the current LambdaScopeInfo). Additionally,
a TemplateParameterList data-member was added to hold the invented
TemplateParameterList AST node which will be much more useful
once we teach TreeTransform how to transform generic lambdas.
- SemaLambda.h was added to hold some common lambda utility
functions (this file is likely to grow ...)
- Teach Sema::ActOnStartOfFunctionDef to check whether it
is being called to instantiate a generic lambda's call
operator, and if so, push an appropriately prepared
LambdaScopeInfo object on the stack.
- Teach Sema::ActOnStartOfLambdaDefinition to set the
return type of a lambda without a trailing return type
to 'auto' in C++1y mode, and teach the return type
deduction machinery in SemaStmt.cpp to process either
C++11 and C++14 lambda's correctly depending on the flag.
- various tests were added - but much more will be needed.
A greatful thanks to all reviewers including Eli Friedman,
James Dennett and the ever illuminating Richard Smith. And
yet I am certain that I have allowed unidentified bugs to creep in;
bugs, that I will do my best to slay, once identified!
Thanks!
llvm-svn: 188977
With r185721, calling mangleCXXRTTIName on C code will cause crashes.
This commit fixes crashes on C testing cases when turning on struct-path TBAA.
For C code, we simply use the Decl name without the context. This can
cause two different structs having the same name, and may cause inaccurate but
conservative alias results.
llvm-svn: 188930
1. We now print the return type of lambdas and return type deduced functions
as "auto". Trailing return types with decltype print the underlying type.
2. Use the lambda or block scope for the PredefinedExpr type instead of the
parent function. This fixes PR16946, a strange mismatch between type of the
expression and the actual result.
3. Verify the type in CodeGen.
4. The type for blocks is still wrong. They are numbered and the name is not
known until CodeGen.
llvm-svn: 188900
This reverts commit r188687 (reverts r188642 (reverts 188600 (reverts
188576))).
With added test coverage & fix for -gline-tables-only.
Thanks Michael Gottesman for reverting this patch when it demonstrated
problems & providing a reproduction/details to help me track this down.
llvm-svn: 188739
Refactor the underlying code a bit to remove unnecessary calls to
"hasErrorOccurred" & make them consistently at all the entry points to
the IRGen ASTConsumer.
llvm-svn: 188707
This reverts commit r188642.
This change is causing LTO builds to cause our 16 GB machines to swap and OOM
all weekend. I am going to work with Dave Blaikie to resolve the issue.
Sorry Dave =(.
llvm-svn: 188687
This reverts commit r188600.
r188640/r188639 fixed the root cause of the crash-on-valid that r188600
originally introduced. This now appears to bootstrap debug clang
successfully to the best of my testing.
llvm-svn: 188642
A partner to r188639, this is a somewhat heavy-handed fix to the general
issue, since even after that prior change the issue does still
unavoidably arise with template parameters (see test case).
There are other ways we could consider addressing this (see FIXME).
llvm-svn: 188640
Possible minor reduction in debug info & avoid some cases where creating
a context chain could lead to the type the context chain is being
created for, being created. (this is still possible with template
parameters - tests/fixes/improvements to follow)
llvm-svn: 188639
Fixes a crash-on-valid introduced by r188486 (which should've occurred
earlier but for a blatant bug where calling createFwdDecl from the
requireCompleteType callback was useless under -flimit-debug-info and we
were just getting lucky with other later callbacks requiring the type
anyway).
llvm-svn: 188622
Updated test case to not rely on line numbers in more cases (it's hard
to use the @ check syntax for debug info test cases (due to the
interesting ordering of metadata) and this case in particular (given the
hash-line directive)) - left a few in there to cover the line number
information for these.
llvm-svn: 188585
Rather than going through the whole getOrCreateType machinery to
manifest a type, cut straight to the implementation because we know we
have to do work.
While the previous implementation was sufficient for the two cases
(completeness and required completeness) we have already (the general
machinery could inspect the type for those attributes & go down the full
definition path), a pending change (to emit info for types when we emit
their vtables) won't have that luxury & we'll need to force the creation
rather than relying on the general purpose routine.
llvm-svn: 188486
Summary:
We would crash in CodeGen::CodeGenModule::EmitUuidofInitializer
because our attempt to enter CodeGen::CodeGenModule::EmitConstantValue
will be foiled: the type of the constant value is incomplete.
Instead, create an unnamed type with the proper layout on all platforms.
Punt the problem of wrongly defined struct _GUID types to the user.
(It's impossible because the TU may never get to see the type and thus
we can't verify that it is suitable.)
This fixes PR16856.
Reviewers: rsmith, rnk, thakis
Reviewed By: rnk
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1375
llvm-svn: 188481
Summary:
It seems that __uuidof introduces a global extern "C" declaration of
type __s_GUID. However, our implementation of __uuidof does not provide
such a declaration and thus must open-code the mangling for __uuidof in
template parameters.
This allows us to codegen scoped COM pointers and other such things.
This fixes PR16836.
Depends on D1356.
Reviewers: rnk, cdavis5x, rsmith
Reviewed By: rnk
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1357
llvm-svn: 188252
This includes special members (copy/default ctor, copy assign, default
ctor) and template specializations for member function templates.
Good for a 5% decrease (1.80 to 1.71 GB) in size on Clang+LLVM's .dwo
files (when using fission).
llvm-svn: 188085
We mangled them like:
L___uuid_12345678-1234-1234-1234-123456789abc
We should've mangled them like:
__GUID_12345678_1234_1234_1234_123456789abc
Furthermore, they are external symbols.
llvm-svn: 188053
Summary:
UBSan was checking for alignment of the derived class on the pointer to
the base class, before converting. With some class hierarchies, this could
generate false positives.
Added test-case.
llvm-svn: 187948
These flags set some preprocessor macros and injects a dependency
on the runtime library into the object file, which later is picked up
by the linker.
This also adds a new CC1 flag for adding a dependent library.
Differential Revision: http://llvm-reviews.chandlerc.com/D1315
llvm-svn: 187945
DataFlowSanitizer is a generalised dynamic data flow analysis.
Unlike other Sanitizer tools, this tool is not designed to detect a
specific class of bugs on its own. Instead, it provides a generic
dynamic data flow analysis framework to be used by clients to help
detect application-specific issues within their own code.
Differential Revision: http://llvm-reviews.chandlerc.com/D966
llvm-svn: 187925
This field is just IsDefaulted && !IsDeleted; in all places it's used,
a simple check for isDefaulted() is superior anyway, and we were forgetting
to set it in a few cases.
Also eliminate CXXDestructorDecl::IsImplicitlyDefined, for the same reasons.
No intended functionality change.
llvm-svn: 187891
Without an ODR, the -flimit-debug-info debug info size optimization of
emitting declarations for fully defined types when only a declaration is
needed by the TU, is incorrect. Emit the full definition whenever it's
available in non-C++.
llvm-svn: 187611
We emit definitions with no members when a nested type is
referenced/required (GCC does the same, to be fair) but failed to attach
the template arguments in such a case.
llvm-svn: 187608
Patch by Ana Pazos
- Completed implementation of instruction formats:
AdvSIMD three same
AdvSIMD modified immediate
AdvSIMD scalar pairwise
- Completed implementation of instruction classes
(some of the instructions in these classes
belong to yet unfinished instruction formats):
Vector Arithmetic
Vector Immediate
Vector Pairwise Arithmetic
- Initial implementation of instruction formats:
AdvSIMD scalar two-reg misc
AdvSIMD scalar three same
- Intial implementation of instruction class:
Scalar Arithmetic
- Initial clang changes to support arm v8 intrinsics.
Note: no clang changes for scalar intrinsics function name mangling yet.
- Comprehensive test cases for added instructions
To verify auto codegen, encoding, decoding, diagnosis, intrinsics.
llvm-svn: 187568
Previously a 2-bit mask was used to mask each element of a vec6 mask before doing the extracts instead of 3-bit mask necessary to cover 0-5. vec3 was the only non-power-of-2 that worked correctly because a +1 conditionally added before calculating floor(log2(elements)).
llvm-svn: 187560
Restore it after each argument is emitted. This fixes the scope info for
inlined subroutines inside of function argument expressions. (E.g.,
anything STL).
rdar://problem/12592135
llvm-svn: 187240
This patch provides basic support for powerpc64le as an LLVM target.
However, use of this target will not actually generate little-endian
code. Instead, use of the target will cause the correct little-endian
built-in defines to be generated, so that code that tests for
__LITTLE_ENDIAN__, for example, will be correctly parsed for
syntax-only testing. Code generation will otherwise be the same as
powerpc64 (big-endian), for now.
The patch leaves open the possibility of creating a little-endian
PowerPC64 back end, but there is no immediate intent to create such a
thing.
The new test case variant ensures that correct built-in defines for
little-endian code are generated.
llvm-svn: 187180
This allows the ObjFW runtime to correctly implement message forwarding
for messages which return a struct.
Patch by Jonathan Schleifer.
llvm-svn: 187174
only affect functions without a separate return block. This fixes the
linetable for void functions with cleanups and multiple returns.
llvm-svn: 187090
r186899 and r187061 added a preferred way for some architectures not to get
intrinsic generation for math builtins. So the code changes in r185568 can
now be undone (the test remains).
llvm-svn: 187079
Before this change, Clang uses the x86 representation for C++ method
pointers when generating code for PNaCl. However, the resulting code
will assume that function pointers are 0 mod 2. This assumption is
not safe for PNaCl, where function pointers could have any value
(especially in future sandboxing models).
So, switch to using the ARM representation for PNaCl code, which makes
no assumptions about the alignment of function pointers.
Since we're changing the "le32" target, this change also applies to
Emscripten. The change is beneficial for Emscripten too. Emscripten
has a workaround to make function pointers 0 mod 2. This change would
allow the workaround to be removed.
See: https://code.google.com/p/nativeclient/issues/detail?id=3450
llvm-svn: 187051
The 64-bit PowerPC ELF ABI requires a struct that contains a single
vector member to be passed in a vector register as though the wrapping
struct were not present. Instead we were passing this as a byval
struct.
The same logic was already present for floating-point arguments, so
this patch just extends the logic to handle vector types. The new
test case verifies that clang coerces the parameter and annotates it
as inreg.
Thanks,
Bill
llvm-svn: 186993
Based on Peter Collingbourne's destructor patches.
Prior to this change, clang was considering ?1 to be the complete
destructor and the base destructor, which was wrong. This lead to
crashes when clang tried to emit two LLVM functions with the same name.
In this ABI, TUs with non-inline dtors might not emit a complete
destructor. They are emitted as inline thunks in TUs that need them,
and they always delegate to the base dtors of the complete class and its
virtual bases. This change uses the DeferredDecls machinery to emit
complete dtors as needed.
Currently in clang try body destructors can catch exceptions thrown by
virtual base destructors. In the Microsoft C++ ABI, clang may not have
the destructor definition, in which case clang won't wrap the virtual
virtual base destructor calls in a try-catch. Diagnosing this in user
code is TODO.
Finally, for classes that don't use virtual inheritance, MSVC always
calls the base destructor (?1) directly. This is a useful code size
optimization that avoids emitting lots of extra thunks or aliases.
Implementing it also means our existing tests continue to pass, and is
consistent with MSVC's output.
We can do the same for Itanium by tweaking GetAddrOfCXXDestructor, but
it will require further testing.
Reviewers: rjmccall
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1066
llvm-svn: 186828
optimize, to follow the permissions granted in N3664. Under those rules, only
calls generated by new-expressions and delete-expressions are permitted to be
optimized, and direct calls to ::operator new and ::operator delete must be
treated as normal calls.
llvm-svn: 186799
This is the same way GenericSelectionExpr works, and it's generally a
more consistent approach.
A large part of this patch is devoted to caching the value of the condition
of a ChooseExpr; it's needed to avoid threading an ASTContext into
IgnoreParens().
Fixes <rdar://problem/14438917>.
llvm-svn: 186738
use the conversion to bool to check if we've managed to get a type
that isn't default constructed - as we meant to in the first place.
llvm-svn: 186556
inspired by CodegenFunction::LexicalScope.
- NoLocation temporarily turns off debug locations altogether.
This is useful for emitting instructions that should be
counted towards the function prologue.
- BuiltinLocation temporarily switches to an artificial debug location
that has a valid scope, but no line information. This is useful when
emitting compiler-generated helper functions that have no source
location associated with them.
llvm-svn: 186552
_Complex load/store didn't have their alignment set properly, which was visible when GCC's torture tests use volatile _Complex.
Update some existing tests to check for alignment, and add a new test which also has over-aligned volatile _Complex (since the imaginary part shouldn't be overaligned, only the real part).
llvm-svn: 186490
Sema needs to be able to accurately determine what will be
emitted as a constant initializer and what will not, so
we get accurate errors in C and accurate -Wglobal-constructors
warnings in C++. This makes Expr::isConstantInitializer match
CGExprConstant as closely as possible.
llvm-svn: 186464
This adds three overloaded intrinsics to Clang:
T __builtin_arm_ldrex(const volatile T *addr)
int __builtin_arm_strex(T val, volatile T *addr)
void __builtin_arm_clrex()
The intent is that these do what users would expect when given most sensible
types. Currently, "sensible" translates to ints, floats and pointers.
llvm-svn: 186394
This simplifies the core benefit of -flimit-debug-info by taking a more
systematic approach to avoid emitting debug info definitions for types
that only require declarations. The previous ad-hoc approach (3 cases
removed in this patch) had many holes.
The general approach (adding a bit to TagDecl and callback through
ASTConsumer) has been discussed with Richard Smith - though always open
to revision.
llvm-svn: 186262
Test coverage for non-dependent pack expansions doesn't demonstrate a
failure prior to this patch (a follow-up commit improving debug info
will cover this commit specifically) but covers a related hole in our
test coverage.
Reviewed by Richard Smith & Eli Friedman.
llvm-svn: 186261
& operator (ignoring any overloaded operator& for the type). The purpose of
this builtin is for use in std::addressof, to allow it to be made constexpr;
the existing implementation technique (reinterpret_cast to some reference type,
take address, reinterpert_cast back) does not permit this because
reinterpret_cast between reference types is not permitted in a constant
expression in C++11 onwards.
llvm-svn: 186053
Do not generate VLAs as complex variables any more, as they are now
correctly represented as breg+0 locations in the backend.
(Paired commit with LLVM: r185966)
rdar://problem/13658587
llvm-svn: 185967
This changes the TBAA code so it doesn't use mangleCXXRTTIName in C,
because it doesn't really make sense there. Also, as sort of a
defense-in-depth change, fix the mangler so it handles C RecordDecls
correctly.
No tests because I don't know the TBAA code well enough to write a test,
and I don't know how else to trigger mangling a local struct in C.
Fixes a crash with r185450 reported by Joerg Sonnenberger.
llvm-svn: 185721
Without fmath-errno, Clang currently generates calls to @llvm.pow.* intrinsics
when it sees pow*(). This may not be suitable for all targets (for
example le32/PNaCl), so the attached patch adds a target hook that CodeGen
queries. The target can state its preference for having or not having the
intrinsic generated. Non-PNaCl behavior remains unchanged;
PNaCl-specific test added.
llvm-svn: 185568
The key insight here is that weak linkage for a static local variable
should always mean linkonce_odr, because every file that needs it will
generate a definition. We don't actually care about the precise linkage
of the parent context. I feel a bit silly that I didn't realize this before.
llvm-svn: 185381
Blocks, like lambdas, can be written in contexts which are required to be
treated as the same under ODR. Unlike lambdas, it isn't possible to actually
take the address of a block, so the mangling of the block itself doesn't
matter. However, objects like static variables inside a block do need to
be mangled in a consistent way.
There are basically three components here. One, block literals need a
consistent numbering. Two, objects/types inside a block literal need
to be mangled using it. Three, objects/types inside a block literal need
to have their linkage computed correctly.
llvm-svn: 185372
This allows clang to use the backend parameter attribute 'returned' when generating 'this'-returning constructors and destructors in ARM and MSVC C++ ABIs.
llvm-svn: 185291
This function only makes sense there. Eventually it should no longer
be part of the CGCXXABI interface, as it is an Itanium-specific detail.
Differential Revision: http://llvm-reviews.chandlerc.com/D821
llvm-svn: 185213
passing arguments in the fixed style.
We have an abstraction for deciding this, but it's (1) deep in
IR-generation, (2) necessarily tied to exact argument lists, and
(3) triggered by unprototyped function types, which we can't
legitimately make in C++ mode. So this solution, wherein Sema
rewrites the function type to an exact prototype but leaves the
variadic bit enabled so as to request x86-64-like platforms to
pass the extra variadic info, is very much a hack, but it's one
that works in practice on the platforms that LLDB will support
in the medium term --- the only place we know of where it's a
problem is instance methods in Windows, where variadic functions
are implicitly cdecl. We may have a more abstracted base on which
to build a solution by then.
rdar://13731520
llvm-svn: 185112
The old implementation of ms_struct in RecordLayoutBuilder was a
complete mess: it depended on complicated conditionals which didn't
really reflect the underlying logic, and placed a burden on users of
the resulting RecordLayout. This commit rips out almost all of the
old code, and replaces it with simple checks in
RecordLayoutBuilder::LayoutBitField.
This commit also fixes <rdar://problem/14252115>, a bug where class
inheritance would cause us to lay out bitfields incorrectly.
llvm-svn: 185018
The goal of this sugar node is to be able to look at an arbitrary
FunctionType and tell if any of the parameters were decayed from an
array or function type. Ultimately this is necessary to implement
Microsoft's C++ name mangling scheme, which mangles decayed arrays
differently from normal pointers.
Reviewers: rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D1014
llvm-svn: 184763
There's still a problem here - since we're not appropriately using the
signedness/range of the enum to chooset the encoding and emission of
enumerators, but GCC has some bugs around this too so I assume that's
not /such/ a high priority though I may get to it soon out of
completeness.
llvm-svn: 184695
Empty structs are ignored for parameter passing purposes, but va_arg was
incrementing the pointer anyway which could lead to va_list getting out of
sync.
llvm-svn: 184605
According to the Itanium ABI (3.1.1), types with non-trivial copy constructors
passed by value should be passed indirectly, with the caller creating a
temporary.
We got this mostly correct, but forgot that empty structs can have non-trivial
constructors too and passed them incorrectly. This simply reverses the order of
the check.
llvm-svn: 184603
Itanium destroys them in the caller at the end of the full expression,
but MSVC destroys them in the callee. This is further complicated by
the need to emit EH-only destructor cleanups in the caller.
This should help clang compile MSVC's debug iterators more correctly.
There is still an outstanding issue in PR5064 of a memcpy emitted by the
LLVM backend, which is not correct for C++ records.
Fixes PR16226.
Reviewers: rjmccall
Differential Revision: http://llvm-reviews.chandlerc.com/D929
llvm-svn: 184543
This just seems a bit tidier/more principled. Based on a patch provided
by Adrian - with the only minor tweak that it needed to use
"getTypeOrNull" rather than "getCompletedTypeOrNull" since we don't
store declarations in the CompletedTypes cache.
No intended functionality change.
llvm-svn: 184509
This will enable users in security critical applications to perform
checked-arithmetic in a fast safe manner that is amenable to c.
Tests/an update to Language Extensions is included as well.
rdar://13421498.
llvm-svn: 184497
r174939-40 caused us to do this in the canonical terminate lpad,
but when the EH stack has other cleanups on it we use the
terminate handler block, which wasn't doing this.
Fixes the rest of rdar://11904428 given appropriate stdlib support.
llvm-svn: 184475
The simplify-libcalls pass has been removed from LLVM. Thus
'PMBuilder.DisableSimplifyLibCalls' does not exist anymore.
The disabling/enabling of library call simplifications is
done through the TargetLibraryInfo which is already wired
up in Clang.
llvm-svn: 184458
This is to fix the location information for such parameters to refer to
the object accessible through the pointer rather than to the pointer
parameter itself.
llvm-svn: 184367
1) Removed useless return value of CGCXXABI::EmitConstructorCall and CGCXXABI::EmitVirtualDestructorCall and implementations
2) Corrected last portion of CodeGenCXX/constructor-destructor-return-this to correctly test for non-'this'-return of virtual destructor calls
llvm-svn: 184330
In Itanium, dynamic classes have one vtable with several different
address points for dynamic base classes that can't share vtables.
In the MS C++ ABI, each vbtable that can't be shared gets its own
symbol, similar to how ctor vtables work in Itanium. However, instead
of mangling the subobject offset into the symbol, the unique portions of
the inheritance path are mangled into the symbol to make it unique.
This patch implements the MSVC 2012 scheme for forming unique vbtable
symbol names. MSVC 2010 use the same mangling with a different subset
of the path. Implementing that mangling and possibly others is TODO.
Each vbtable is an array of i32 offsets from the vbptr that points to it
to another virtual base subobject. The first entry of a vbtable always
points to the base of the current subobject, implying that it is the
same no matter which parent class contains it.
Reviewers: rjmccall
Differential Revision: http://llvm-reviews.chandlerc.com/D636
llvm-svn: 184309
These options will add a module flag with name "Dwarf Version".
The behavior flag is currently set to Warning, so when two values disagree,
a warning will be emitted.
llvm-svn: 184276
limiting debug info.
FIXME: There is still work left to do here, the testcase should work even with -flimit-debug-info.
rdar://problem/14101097
llvm-svn: 184252
I have had several people ask me about why this builtin was not available in
clang (since it seems like a logical conclusion). This patch implements said
builtins.
Relevant tests are included as well. I also updated the Clang language extension reference.
rdar://14192664.
llvm-svn: 184227
The backend will now use the generic 'returned' attribute to form tail calls where possible, as well as avoid save-restores of 'this' in some cases (specifically the cases that matter for the ARM C++ ABI).
This patch also reverts a prior front-end only partial implementation of these optimizations, since it's no longer required.
llvm-svn: 184205
between a block assignment and the entry of the block function. In reality
this wouldn't work anyway because blocks are predominantly created
on-the-fly inside of an ObjC method invocation.
The proper fix for the ambiguity is to use -gcolumn-info to differentiate
the breakpoints.
This is expected to break some block-related darwin-gdb tests.
rdar://problem/14039866
llvm-svn: 184157