Commit Graph

37 Commits

Author SHA1 Message Date
Tobias Grosser 3717aa5ddb This reverts recent expression type changes
The recent expression type changes still need more discussion, which will happen
on phabricator or on the mailing list. The precise list of commits reverted are:

- "Refactor division generation code"
- "[NFC] Generate runtime checks after the SCoP"
- "[FIX] Determine insertion point during SCEV expansion"
- "Look through IntToPtr & PtrToInt instructions"
- "Use minimal types for generated expressions"
- "Temporarily promote values to i64 again"
- "[NFC] Avoid unnecessary comparison for min/max expressions"
- "[Polly] Fix -Wunused-variable warnings (NFC)"
- "[NFC] Simplify min/max expression generation"
- "Simplify the type adjustment in the IslExprBuilder"

Some of them are just reverted as we would otherwise get conflicts. I will try
to re-commit them if possible.

llvm-svn: 272483
2016-06-11 19:17:15 +00:00
Johannes Doerfert 695c6b476a [FIX] Model the rounding behaviour of SRem correctly
llvm-svn: 272001
2016-06-07 12:00:37 +00:00
Johannes Doerfert dedb7693ec Look through IntToPtr & PtrToInt instructions
IntToPtr and PtrToInt instructions are basically no-ops that we can handle as
  such. In order to generate them properly as parameters we had to improve the
  ScopExpander, though the change is the first in the direction of a more
  aggressive scalar synthetization.

llvm-svn: 271888
2016-06-06 12:12:27 +00:00
Johannes Doerfert f643785b14 Replace getSCEV with getSCEVAtScope
llvm-svn: 271881
2016-06-06 10:07:40 +00:00
Johannes Doerfert ba91a58e42 [NFC] Use the ScalarEvolution member of the SCEVAffinator
llvm-svn: 271880
2016-06-06 10:06:53 +00:00
Johannes Doerfert 48975276be [NFC] Coalesce invariant context sets early
llvm-svn: 271879
2016-06-06 10:06:07 +00:00
Johannes Doerfert 6631bfdd1c [FIX] Correctly translate i1 expressions
llvm-svn: 271534
2016-06-02 16:57:12 +00:00
Johannes Doerfert 952b5304bc Add and use Scop::contains(Loop/BasicBlock/Instruction) [NFC]
llvm-svn: 270424
2016-05-23 12:40:48 +00:00
Johannes Doerfert 3f52e35471 Directly access information through the Scop class [NFC]
llvm-svn: 270421
2016-05-23 12:38:05 +00:00
Johannes Doerfert 6f1bb7a9d9 Support truncate operations
Truncate operations are basically modulo operations, thus we can model
  them that way. However, for large types we assume the operand to fit
  in the new type size instead of introducing a modulo with a very large
  constant.

llvm-svn: 269300
2016-05-12 15:13:49 +00:00
Johannes Doerfert 56b377644a Expose interpretAsUnsigned in the SCEVAffinator [NFC]
This exposes the functionality to interpret a SCEV, or better the
  piece-wise function created from the SCEV, as an unsigned value
  instead of a signed one.

llvm-svn: 269044
2016-05-10 11:45:46 +00:00
Michael Kruse bc150127ae Rename Conjuncts -> Disjunctions. NFC.
The check for complexity compares the number of polyhedra in a set,
which are combined by disjunctions (union, "OR"),
not conjunctions (intersection, "AND").

llvm-svn: 268223
2016-05-02 12:25:18 +00:00
Michael Kruse 2d3ff2a5ba Typo: isToComplex -> isTooComplex. NFC.
llvm-svn: 268220
2016-05-02 10:44:20 +00:00
Johannes Doerfert 172dd8b923 Allow unsigned divisions
After zero-extend operations and unsigned comparisons we now allow
  unsigned divisions. The handling is basically the same as for signed
  division, except the interpretation of the operands. As the divisor
  has to be constant in both cases we can simply interpret it as an
  unsigned value without additional complexity in the representation.
  For the dividend we could choose from the different representation
  schemes introduced for zero-extend operations but for now we will
  simply use an assumption.

llvm-svn: 268032
2016-04-29 11:53:35 +00:00
Johannes Doerfert ba9725ff41 Refactor SCEVAffinator [NFC]
llvm-svn: 268031
2016-04-29 11:52:30 +00:00
Johannes Doerfert 3e48ee2ab9 [FIX] Unsigned comparisons change invalid domain
It does not suffice to take a global assumptions for unsigned comparisons but
  we also need to adjust the invalid domain of the statements guarded by such
  an assumption. To this end we allow to specialize the getPwAff call now in
  order to indicate unsigned interpretation.

llvm-svn: 268025
2016-04-29 10:44:41 +00:00
Johannes Doerfert 323ab3975b [FIX] Adjust assumption space for zext instructions
llvm-svn: 267552
2016-04-26 12:44:01 +00:00
Johannes Doerfert 625bb1fc10 Do not add but record signed-unsigned assumptions
llvm-svn: 267528
2016-04-26 09:16:36 +00:00
Johannes Doerfert c3596284c3 Model zext-extend instructions
A zero-extended value can be interpreted as a piecewise defined signed
  value. If the value was non-negative it stays the same, otherwise it
  is the sum of the original value and 2^n where n is the bit-width of
  the original (or operand) type. Examples:
    zext i8 127 to i32 -> { [127] }
    zext i8  -1 to i32 -> { [256 + (-1)] } = { [255] }
    zext i8  %v to i32 -> [v] -> { [v] | v >= 0; [256 + v] | v < 0 }

  However, LLVM/Scalar Evolution uses zero-extend (potentially lead by a
  truncate) to represent some forms of modulo computation. The left-hand side
  of the condition in the code below would result in the SCEV
  "zext i1 <false, +, true>for.body" which is just another description
  of the C expression "i & 1 != 0" or, equivalently, "i % 2 != 0".

    for (i = 0; i < N; i++)
      if (i & 1 != 0 /* == i % 2 */)
        /* do something */

  If we do not make the modulo explicit but only use the mechanism described
  above we will get the very restrictive assumption "N < 3", because for all
  values of N >= 3 the SCEVAddRecExpr operand of the zero-extend would wrap.
  Alternatively, we can make the modulo in the operand explicit in the
  resulting piecewise function and thereby avoid the assumption on N. For the
  example this would result in the following piecewise affine function:
  { [i0] -> [(1)] : 2*floor((-1 + i0)/2) = -1 + i0;
    [i0] -> [(0)] : 2*floor((i0)/2) = i0 }
  To this end we can first determine if the (immediate) operand of the
  zero-extend can wrap and, in case it might, we will use explicit modulo
  semantic to compute the result instead of emitting non-wrapping assumptions.

  Note that operands with large bit-widths are less likely to be negative
  because it would result in a very large access offset or loop bound after the
  zero-extend. To this end one can optimistically assume the operand to be
  positive and avoid the piecewise definition if the bit-width is bigger than
  some threshold (here MaxZextSmallBitWidth).

  We choose to go with a hybrid solution of all modeling techniques described
  above. For small bit-widths (up to MaxZextSmallBitWidth) we will model the
  wrapping explicitly and use a piecewise defined function. However, if the
  bit-width is bigger than MaxZextSmallBitWidth we will employ overflow
  assumptions and assume the "former negative" piece will not exist.

llvm-svn: 267408
2016-04-25 14:01:36 +00:00
Johannes Doerfert ac9c32e216 Translate SCEVs to isl_pw_aff and their invalid domain
The SCEVAffinator will now produce not only the isl representaiton of
  a SCEV but also the domain under which it is invalid. This is used to
  record possible overflows that can happen in the statement domains in
  the statements invalid domain. The result is that invalid loads have
  an accurate execution contexts with regards to the validity of their
  statements domain. While the SCEVAffinator currently is only taking
  "no-wrapping" assumptions, we can add more withouth worrying about the
  execution context of loads that are optimistically hoisted.

llvm-svn: 267288
2016-04-23 14:31:17 +00:00
Johannes Doerfert 615e0b85f8 Record wrapping assumptions early
Utilizing the record option for assumptions we can simplify the wrapping
  assumption generation a lot. Additionally, we can now report locations
  together with wrapping assumptions, though they might not be accurate yet.

llvm-svn: 266069
2016-04-12 13:28:39 +00:00
Johannes Doerfert 65f86cd8b0 Simplify SCEVAffinator code [NFC]
llvm-svn: 266051
2016-04-12 09:33:47 +00:00
Johannes Doerfert b47cbe1c72 [FIX] Handle multiplications in the SCEVAffinator again
If ScalarEvolution cannot look through some expression but we do, it
  might happen that a multiplication will arrive at the
  SCEVAffinator::visitMulExpr. While we could always try to improve the
  extractConstantFactor function we might still miss something, thus we
  reintroduce the code to generate multiplicative piecewise-affine
  functions as a fall-back.

llvm-svn: 265777
2016-04-08 10:27:40 +00:00
Johannes Doerfert 6462d8c1d9 Generalize the domain complexity restrictions
This patch applies the restrictions on the number of domain conjuncts
  also to the domain parts of piecewise affine expressions we generate.
  To this end the wording is change slightly. It was needed to support
  complex additions featuring zext-instructions but it also fixes PR27045.

  lnt profitable runs reports only little changes that might be noise:
  Compile Time:
    Polybench/[...]/2mm                     +4.34%
    SingleSource/[...]/stepanov_container   -2.43%
  Execution Time:
    External/[...]/186_crafty               -2.32%
    External/[...]/188_ammp                 -1.89%
    External/[...]/473_astar                -1.87%

llvm-svn: 264514
2016-03-26 16:17:00 +00:00
Michael Kruse 09eb4451d2 Pass scope and LoopInfo to SCEVValidator. NFC.
The scope will be required in the following fix. This commit separates
the large changes that do not change behaviour from the small, but
functional change.

llvm-svn: 262664
2016-03-03 22:10:47 +00:00
Johannes Doerfert 965edde695 Separate more constant factors of parameters
So far we separated constant factors from multiplications, however,
  only when they are at the outermost level of a parameter SCEV. Now,
  we also separate constant factors from the parameter SCEV if the
  outermost expression is a SCEVAddRecExpr. With the changes to the
  SCEVAffinator we can now improve the extractConstantFactor(...)
  function at will without worrying about any other code part. Thus,
  if needed we can implement a more comprehensive
  extractConstantFactor(...) function that will traverse the SCEV
  instead of looking only at the outermost level.

  Four test cases were affected. One did not change much and the other
  three were simplified.

llvm-svn: 260859
2016-02-14 22:30:56 +00:00
Tobias Grosser c2bb0cbe00 Sort includes using Chandler's sort_includes.py script
llvm-svn: 248568
2015-09-25 09:49:19 +00:00
Johannes Doerfert 6a72a2af13 Use <nsw> AddRecs in the affinator to avoid bounded assumptions
If we encounter a <nsw> tagged AddRec for a loop we know the trip count of
  that loop has to be bounded or the semantics is undefined anyway. Hence, we
  only need to add unbounded assumptions if no such AddRec is known.

llvm-svn: 248128
2015-09-20 16:59:23 +00:00
Johannes Doerfert 883f8c1d2f Use modulo semantic to generate non-integer-overflow assumptions
This will allow to generate non-wrap assumptions for integer expressions
  that are part of the SCoP. We compare the common isl representation of
  the expression with one computed with modulo semantic. For all parameter
  combinations they are not equal we can have integer overflows.

  The nsw flags are respected when the modulo representation is computed,
  nuw and nw flags are ignored for now.

  In order to not increase compile time to much, the non-wrap assumptions
  are collected in a separate boundary context instead of the assumed
  context. This helps compile time as the boundary context can become
  complex and it is therefor not advised to use it in other operations
  except runtime check generation. However, the assumed context is e.g.,
  used to tighten dependences. While the boundary context might help to
  tighten the assumed context it is doubtful that it will help in practice
  (it does not effect lnt much) as the boundary (or no-wrap assumptions)
  only restrict the very end of the possible value range of parameters.

  PET uses a different approach to compute the no-wrap context, though lnt runs
  have shown that this version performs slightly better for us.

llvm-svn: 247732
2015-09-15 22:52:53 +00:00
Johannes Doerfert cef616fe2d Use blocks instead of domains in SCEVAffinator
Due to the new domain generation, the SCoP keeps track of the domain
  for all blocks, thus the SCEVAffinator can now work with blocks to avoid
  duplication of the domains.

llvm-svn: 247731
2015-09-15 22:49:04 +00:00
Johannes Doerfert b1e3bbb7c9 [FIX] Keep a copy of the Domain set in the SCEVAffinator
llvm-svn: 246397
2015-08-30 19:52:06 +00:00
Johannes Doerfert b409fdc0d7 [NFC] Make SCEVAffinator work without a statement
llvm-svn: 246290
2015-08-28 09:24:35 +00:00
Johannes Doerfert d020b77295 Use ISL to Determine Loop Trip Count
Use ISL to compute the loop trip count when scalar evolution is unable to do
  so.

Contributed-by: Matthew Simpson <mssimpso@codeaurora.org>

Differential Revision: http://reviews.llvm.org/D9444

llvm-svn: 246142
2015-08-27 06:53:52 +00:00
Tobias Grosser d46fd5ed95 Make the dimension sizes of in ScopArrayInfo available as isl_pw_affs
This makes it easier to reason about the size of an array dimension with isl.

llvm-svn: 244757
2015-08-12 15:27:16 +00:00
Johannes Doerfert 5451544a17 Remove identity operation from SCEVAffinator
llvm-svn: 244736
2015-08-12 10:58:01 +00:00
Johannes Doerfert 3f0a2a325f Add caching to the SCEVAffinator
While the compile time is not affected by this patch much it will
  allow us to look at all translated expressions after the SCoP is build
  in a convenient way. Additionally, bigger SCoPs or SCoPs with
  repeating complicated expressions might benefit from the cache later
  on.

Reviewers: grosser, Meinersbur

Subscribers: #polly

Differential Revision: http://reviews.llvm.org/D11975

llvm-svn: 244734
2015-08-12 10:46:33 +00:00
Johannes Doerfert 574182d394 Expose the SCEVAffinator and make it a member of a SCoP.
This change has three major advantages:
    - The ScopInfo becomes smaller.
    - It allows to use the SCEVAffinator from outside the ScopInfo.
    - A member object allows state which in turn allows e.g., caching.

Differential Revision: http://reviews.llvm.org/D9099

llvm-svn: 244730
2015-08-12 10:19:50 +00:00