This patch is a joint work by Rui Ueyama and me based on D58102 by Xiang Zhang.
It adds Intel CET (Control-flow Enforcement Technology) support to lld.
The implementation follows the draft version of psABI which you can
download from https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI.
CET introduces a new restriction on indirect jump instructions so that
you can limit the places to which you can jump to using indirect jumps.
In order to use the feature, you need to compile source files with
-fcf-protection=full.
* IBT is enabled if all input files are compiled with the flag. To force enabling ibt, pass -z force-ibt.
* SHSTK is enabled if all input files are compiled with the flag, or if -z shstk is specified.
IBT-enabled executables/shared objects have two PLT sections, ".plt" and
".plt.sec". For the details as to why we have two sections, please read
the comments.
Reviewed By: xiangzhangllvm
Differential Revision: https://reviews.llvm.org/D59780
This is equivalent to the existing `import_name` and `import_module`
attributes which control the import names in the final wasm binary
produced by lld.
This maps the existing
This attribute currently requires a string rather than using the
symbol name for a couple of reasons:
1. Avoid confusion with static and dynamic linking which is
based on symbol name. Exporting a function from a wasm module using
this directive is orthogonal to both static and dynamic linking.
2. Avoids name mangling.
Differential Revision: https://reviews.llvm.org/D70520
Add a new '-z nognustack' option that suppresses emitting PT_GNU_STACK
segment. This segment is not supported at all on NetBSD (stack is
always non-executable), and the option is meant to be used to disable
emitting it.
Differential Revision: https://reviews.llvm.org/D56554
This reverts commit r371729 because /linkrepro option also exists
in Microsoft link.exe and their linker takes not a filename but a
directory name as an argument for /linkrepro.
Differential Revision: https://reviews.llvm.org/D68378
llvm-svn: 373703
D64906 allows PT_LOAD to have overlapping p_offset ranges. In the
default R RX RW RW layout + -z noseparate-code case, we do not tail pad
segments when transiting to another segment. This can save at most
3*maxPageSize bytes.
a) Before D64906, we tail pad R, RX and the first RW.
b) With -z separate-code, we tail pad R and RX, but not the first RW (RELRO).
In some cases, b) saves one file page. In some cases, b) wastes one
virtual memory page. The waste is a concern on Fuchsia. Because it uses
compressed binaries, it doesn't benefit from the saved file page.
This patch adds -z separate-loadable-segments to restore the behavior before
D64906. It can affect section addresses and can thus be used as a
debugging mechanism (see PR43214 and ld.so partition bug in
crbug.com/998712).
Reviewed By: jakehehrlich, ruiu
Differential Revision: https://reviews.llvm.org/D67481
llvm-svn: 372807
This is useful for enforcing that builds are independent of the
environment; it can be used when all system library paths are added
via /libpath: already. It's similar ot cl.exe's /X flag.
Since it should also affect %LINK% (the other caller of
`Process::GetEnv` in lld/COFF), the early-option-parsing needs
to move around a bit. The options are:
- Add a manual loop over the argv ArrayRef and look for "/lldignoreenv".
This repeats the name of the flag in both Options.td and in
DriverUtils.cpp.
- Add yet another table.ParseArgs() call just for /lldignoreenv before
adding %LINK%.
- Use the existing early ParseArgs() that's there for --rsp-quoting and use
it for /lldignoreenv for %LINK% as well. This means --rsp-quoting
and /lldignoreenv can't be passed via %LINK%.
I went with the third approach.
Differential Revision: https://reviews.llvm.org/D67456
llvm-svn: 371852
This makes lld-link behave like ld.lld. I don't see a reason for
the two drivers to have different behavior here.
While here, also make lld-link add a version.txt to the tar, like
ld.lld does.
Differential Revision: https://reviews.llvm.org/D67461
llvm-svn: 371729
This patch implements support for the NO_STRIP flag, which will allow
__attribute__((used)) to be implemented.
This accompanies https://reviews.llvm.org/D62542, which moves to setting the
NO_STRIP flag, and will continue to set EXPORTED for Emscripten targets for
compatibility.
Differential Revision: https://reviews.llvm.org/D66968
llvm-svn: 370416
Building on D60557 mention the name of the linker generated contents of
the reproduce archive, response.txt and version.txt.
Also write a shorter description in the ld.lld --help that is closer to
the documentation.
Differential Revision: https://reviews.llvm.org/D66641
llvm-svn: 369762
I think --reproduce is no longer a debug-only option but a useful
option that a common user may want to use. So, this patch updates
the description of the option in the manual page.
Differential Revision: https://reviews.llvm.org/D60557
llvm-svn: 369740
This patch adds new command line option `--undefined-glob` to lld.
That option is a variant of `--undefined` but accepts wildcard
patterns so that all symbols that match with a given pattern are
handled as if they were given by `-u`.
`-u foo` is to force resolve symbol foo if foo is not a defined symbol
and there's a static archive that contains a definition of symbol foo.
Now, you can specify a wildcard pattern as an argument for `--undefined-glob`.
So, if you want to include all JNI symbols (which start with "Java_"), you
can do that by passing `--undefined-glob "Java_*"` to the linker, for example.
In this patch, I use the same glob pattern matcher as the version script
processor is using, so it does not only support `*` but also `?` and `[...]`.
Differential Revision: https://reviews.llvm.org/D63244
llvm-svn: 363396
Branch Target Identification (BTI) and Pointer Authentication (PAC) are
architecture features introduced in v8.5a and 8.3a respectively. The new
instructions have been added in the hint space so that binaries take
advantage of support where it exists yet still run on older hardware. The
impact of each feature is:
BTI: For executable pages that have been guarded, all indirect branches
must have a destination that is a BTI instruction of the appropriate type.
For the static linker, this means that PLT entries must have a "BTI c" as
the first instruction in the sequence. BTI is an all or nothing
property for a link unit, any indirect branch not landing on a valid
destination will cause a Branch Target Exception.
PAC: The dynamic loader encodes with PACIA the address of the destination
that the PLT entry will load from the .plt.got, placing the result in a
subset of the top-bits that are not valid virtual addresses. The PLT entry
may authenticate these top-bits using the AUTIA instruction before
branching to the destination. Use of PAC in PLT sequences is a contract
between the dynamic loader and the static linker, it is independent of
whether the relocatable objects use PAC.
BTI and PAC are independent features that can be combined. So we can have
several combinations of PLT:
- Standard with no BTI or PAC
- BTI PLT with "BTI c" as first instruction.
- PAC PLT with "AUTIA1716" before the indirect branch to X17.
- BTIPAC PLT with "BTI c" as first instruction and "AUTIA1716" before the
first indirect branch to X17.
The use of BTI and PAC in relocatable object files are encoded by feature
bits in the .note.gnu.property section in a similar way to Intel CET. There
is one AArch64 specific program property GNU_PROPERTY_AARCH64_FEATURE_1_AND
and two target feature bits defined:
- GNU_PROPERTY_AARCH64_FEATURE_1_BTI
-- All executable sections are compatible with BTI.
- GNU_PROPERTY_AARCH64_FEATURE_1_PAC
-- All executable sections have return address signing enabled.
Due to the properties of FEATURE_1_AND the static linker can tell when all
input relocatable objects have the BTI and PAC feature bits set. The static
linker uses this to enable the appropriate PLT sequence.
Neither -> standard PLT
GNU_PROPERTY_AARCH64_FEATURE_1_BTI -> BTI PLT
GNU_PROPERTY_AARCH64_FEATURE_1_PAC -> PAC PLT
Both properties -> BTIPAC PLT
In addition to the .note.gnu.properties there are two new command line
options:
--force-bti : Act as if all relocatable inputs had
GNU_PROPERTY_AARCH64_FEATURE_1_BTI and warn for every relocatable object
that does not.
--pac-plt : Act as if all relocatable inputs had
GNU_PROPERTY_AARCH64_FEATURE_1_PAC. As PAC is a contract between the loader
and static linker no warning is given if it is not present in an input.
Two processor specific dynamic tags are used to communicate that a non
standard PLT sequence is being used.
DTI_AARCH64_BTI_PLT and DTI_AARCH64_BTI_PAC.
Differential Revision: https://reviews.llvm.org/D62609
llvm-svn: 362793
Summary:
This updates all places in documentation that refer to "Mac OS X", "OS X", etc.
to instead use the modern name "macOS" when no specific version number is
mentioned.
If a specific version is mentioned, this attempts to use the OS name at the time
of that version:
* Mac OS X for 10.0 - 10.7
* OS X for 10.8 - 10.11
* macOS for 10.12 - present
Reviewers: JDevlieghere
Subscribers: mgorny, christof, arphaman, cfe-commits, lldb-commits, libcxx-commits, llvm-commits
Tags: #clang, #lldb, #libc, #llvm
Differential Revision: https://reviews.llvm.org/D62654
llvm-svn: 362113
Patch by Mark Johnston!
Summary:
When the option is configured, ifunc calls do not go through the PLT;
rather, they appear as regular function calls with relocations
referencing the ifunc symbol, and the resolver is invoked when
applying the relocation. This is intended for use in freestanding
environments where text relocations are permissible and is incompatible
with the -z text option. The option is motivated by ifunc usage in the
FreeBSD kernel, where ifuncs are used to elide CPU feature flag bit
checks in hot paths. Instead of replacing the cost of a branch with that
of an indirect function call, the -z ifunc-noplt option is used to ensure
that ifunc calls carry no hidden overhead relative to normal function
calls.
Test Plan:
I added a couple of regression tests and tested the FreeBSD kernel
build using the latest lld sources.
To demonstrate the effects of the change, I used a micro-benchmark
which results in frequent invocations of a FreeBSD kernel ifunc. The
benchmark was run with and without IBRS enabled, and with and without
-zifunc-noplt configured. The observed speedup is small and consistent,
and is significantly larger with IBRS enabled:
https://people.freebsd.org/~markj/ifunc-noplt/noibrs.txthttps://people.freebsd.org/~markj/ifunc-noplt/ibrs.txt
Reviewed By: ruiu, MaskRay
Differential Revision: https://reviews.llvm.org/D61613
llvm-svn: 360685
The -n (--nmagic) disables page alignment, and acts as a -Bstatic
The -N (--omagic) does what -n does but also marks the executable segment as
writeable. As page alignment is disabled headers are not allocated unless
explicit in the linker script.
To disable page alignment in LLD we choose to set the page sizes to 1 so
that any alignment based on the page size does nothing. To set the
Target->PageSize to 1 we implement -z common-page-size, which has the side
effect of allowing the user to set the value as well.
Setting the page alignments to 1 does mean that any use of
CONSTANT(MAXPAGESIZE) or CONSTANT(COMMONPAGESIZE) in a linker script will
return 1, unlike in ld.bfd. However given that -n and -N disable paging
these probably shouldn't be used in a linker script where -n or -N is in
use.
Differential Revision: https://reviews.llvm.org/D61688
llvm-svn: 360593
As a side benefit, lld-link now reports more than one duplicate resource
entry before exiting with an error even if the new flag is not passed.
llvm-svn: 359829
Fixes small typos in WebAssembly documentation. I first noticed the
sub-heading "Bahavior", and then decided to review the whole file.
Patch by Christoph Siedentop!
Differential Revision: https://reviews.llvm.org/D60987
llvm-svn: 359103
When faced with command line options such as "crtbegin.o appmain.o
-lsomelib crtend.o", GNU ld pulls in all necessary object files from
somelib before proceeding to crtend.o.
LLD operates differently, only loading object files from any
referenced static libraries after processing all input object files.
This uses a similar hack as in the ELF linker. Here, it moves crtend.o
to the end of the vector of object files. This makes sure that
terminator chunks for sections such as .eh_frame gets ordered last,
fixing DWARF exception handling for libgcc and gcc's crtend.o.
Differential Revision: https://reviews.llvm.org/D60628
llvm-svn: 358394
Currently we have -Rpass for filtering the remarks that are displayed as
diagnostics, but when using -fsave-optimization-record, there is no way
to filter the remarks while generating them.
This adds support for filtering remarks by passes using a regex.
Ex: `clang -fsave-optimization-record -foptimization-record-passes=inline`
will only emit the remarks coming from the pass `inline`.
This adds:
* `-fsave-optimization-record` to the driver
* `-opt-record-passes` to cc1
* `-lto-pass-remarks-filter` to the LTOCodeGenerator
* `--opt-remarks-passes` to lld
* `-pass-remarks-filter` to llc, opt, llvm-lto, llvm-lto2
* `-opt-remarks-passes` to gold-plugin
Differential Revision: https://reviews.llvm.org/D59268
Original llvm-svn: 355964
llvm-svn: 355984
Currently we have -Rpass for filtering the remarks that are displayed as
diagnostics, but when using -fsave-optimization-record, there is no way
to filter the remarks while generating them.
This adds support for filtering remarks by passes using a regex.
Ex: `clang -fsave-optimization-record -foptimization-record-passes=inline`
will only emit the remarks coming from the pass `inline`.
This adds:
* `-fsave-optimization-record` to the driver
* `-opt-record-passes` to cc1
* `-lto-pass-remarks-filter` to the LTOCodeGenerator
* `--opt-remarks-passes` to lld
* `-pass-remarks-filter` to llc, opt, llvm-lto, llvm-lto2
* `-opt-remarks-passes` to gold-plugin
Differential Revision: https://reviews.llvm.org/D59268
llvm-svn: 355964
Previously we could emit a warning and generate a potentially invalid
wasm module (due to call sites and functions having conflicting
signatures). Now, rather than create invalid binaries we handle such
cases by creating stub functions containing unreachable, effectively
turning these into runtime errors rather than validation failures.
Differential Revision: https://reviews.llvm.org/D57909
llvm-svn: 354528
Summary:
This follows the ld.bfd/gold behavior.
The error check is useful as it captures a common type of ld.so undefined symbol errors as link-time errors:
// a.cc => a.so (not linked with -z defs)
void f(); // f is undefined
void g() { f(); }
// b.cc => executable with a DT_NEEDED entry on a.so
void g();
int main() { g(); }
// ld.so errors when g() is executed (lazy binding) or when the program is started (-z now)
// symbol lookup error: ... undefined symbol: f
Reviewers: ruiu, grimar, pcc, espindola
Reviewed By: ruiu
Subscribers: llvm-commits, emaste, arichardson
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57569
llvm-svn: 352943