This is a resubmission of https://reviews.llvm.org/D105160 after fixing testing issues.
This fix was created after profiling the target creation of a large C/C++/ObjC application that contained almost 4,000,000 redacted symbol names. The symbol table parsing code was creating names for each of these synthetic symbols and adding them to the name indexes. The code was also adding the object file basename to the end of the symbol name which doesn't allow symbols from different shared libraries to share the names in the constant string pool.
Prior to this fix this was creating 180MB of "___lldb_unnamed_symbol" symbol names and was taking a long time to generate each name, add them to the string pool and then add each of these names to the name index.
This patch fixes the issue by:
not adding a name to synthetic symbols at creation time, and allows name to be dynamically generated when accessed
doesn't add synthetic symbol names to the name indexes, but catches this special case as name lookup time. Users won't typically set breakpoints or lookup these synthetic names, but support was added to do the lookup in case it does happen
removes the object file baseanme from the generated names to allow the names to be shared in the constant string pool
Prior to this fix the startup times for a large application was:
12.5 seconds (cold file caches)
8.5 seconds (warm file caches)
After this fix:
9.7 seconds (cold file caches)
5.7 seconds (warm file caches)
The names of the symbols are auto generated by appending the symbol's UserID to the end of the "___lldb_unnamed_symbol" string and is only done when the name is requested from a synthetic symbol if it has no name.
Differential Revision: https://reviews.llvm.org/D106837
This fix was created after profiling the target creation of a large C/C++/ObjC application that contained almost 4,000,000 redacted symbol names. The symbol table parsing code was creating names for each of these synthetic symbols and adding them to the name indexes. The code was also adding the object file basename to the end of the symbol name which doesn't allow symbols from different shared libraries to share the names in the constant string pool.
Prior to this fix this was creating 180MB of "___lldb_unnamed_symbol" symbol names and was taking a long time to generate each name, add them to the string pool and then add each of these names to the name index.
This patch fixes the issue by:
- not adding a name to synthetic symbols at creation time, and allows name to be dynamically generated when accessed
- doesn't add synthetic symbol names to the name indexes, but catches this special case as name lookup time. Users won't typically set breakpoints or lookup these synthetic names, but support was added to do the lookup in case it does happen
- removes the object file baseanme from the generated names to allow the names to be shared in the constant string pool
Prior to this fix the startup times for a large application was:
12.5 seconds (cold file caches)
8.5 seconds (warm file caches)
After this fix:
9.7 seconds (cold file caches)
5.7 seconds (warm file caches)
The names of the symbols are auto generated by appending the symbol's UserID to the end of the "___lldb_unnamed_symbol" string and is only done when the name is requested from a synthetic symbol if it has no name.
Differential Revision: https://reviews.llvm.org/D105160
Reverts commits:
"Fix failing tests after https://reviews.llvm.org/D104488."
"Fix buildbot failure after https://reviews.llvm.org/D104488."
"Create synthetic symbol names on demand to improve memory consumption and startup times."
This series of commits broke the windows lldb bot and then failed to fix all of the failing tests.
This fix was created after profiling the target creation of a large C/C++/ObjC application that contained almost 4,000,000 redacted symbol names. The symbol table parsing code was creating names for each of these synthetic symbols and adding them to the name indexes. The code was also adding the object file basename to the end of the symbol name which doesn't allow symbols from different shared libraries to share the names in the constant string pool.
Prior to this fix this was creating 180MB of "___lldb_unnamed_symbol" symbol names and was taking a long time to generate each name, add them to the string pool and then add each of these names to the name index.
This patch fixes the issue by:
- not adding a name to synthetic symbols at creation time, and allows name to be dynamically generated when accessed
- doesn't add synthetic symbol names to the name indexes, but catches this special case as name lookup time. Users won't typically set breakpoints or lookup these synthetic names, but support was added to do the lookup in case it does happen
- removes the object file baseanme from the generated names to allow the names to be shared in the constant string pool
Prior to this fix the startup times for a large application was:
12.5 seconds (cold file caches)
8.5 seconds (warm file caches)
After this fix:
9.7 seconds (cold file caches)
5.7 seconds (warm file caches)
The names of the symbols are auto generated by appending the symbol's UserID to the end of the "___lldb_unnamed_symbol" string and is only done when the name is requested from a synthetic symbol if it has no name.
Differential Revision: https://reviews.llvm.org/D104488
Some larger projects were loading quite slowly with the current LLDB on macOS and macOS simulator builds. I did some instrument traces and found 3 main culprits:
- a LLDB timer that was put into a function that was called too often
- a std::set that was keeping track of the address of symbols that were already added
- a unnamed function generator in ObjectFile that was going slow due to allocations
In order to see this in action I ran the latest LLDB on a large application with many frameworks using the following method:
(lldb) script import time; start_time = time.perf_counter()
(lldb) file Large.app
(lldb) script print(time.perf_counter() - start_time)
I first range "sudo purge" to clear the system file caches to simulate a cold startup of the debugger, followed by two iterations with warm file caches.
Prior to this fix I was seeing the following timings:
17.68 (cold)
14.56 (warm 1)
14.52 (warm 2)
After this fix I was seeing:
11.32 (cold)
8.43 (warm 1)
8.49 (warm 2)
Differential Revision: https://reviews.llvm.org/D103504
This patch introduces a LLDB_SCOPED_TIMER macro to hide the needlessly
repetitive creation of scoped timers in LLDB. It's similar to the
LLDB_LOG(F) macro.
Differential revision: https://reviews.llvm.org/D93663
Part 2 of a fix for JITed code debugging. This has been a regression from 5.0 to 6.0 and it's still reproducible on current master: https://bugs.llvm.org/show_bug.cgi?id=36209 Part 1 was D61611 a while ago.
The in-memory object files we obtain from JITLoaderGDB are not yet relocated. It looks like this used to happen on the LLDB side and my guess is that it broke with D38142. (However, it's hard to tell because the whole thing was broken already due to the bug in part 1.) The patch moved relocation resolution to a later point in time and didn't apply it to in-memory objects. I am not aware of any reason why we wouldn't resolve relocations per-se, so I made it unconditional here. On Debian, it fixes the bug for me and all tests in `check-lldb` are still fine.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D90769
Summary:
This patch extends the ModuleSpec class to include a
DataBufferSP which contains the module data. If this
data is provided, LLDB won't try to hit the filesystem
to create the Module, but use only the data stored in
the ModuleSpec.
Reviewers: labath, espindola
Subscribers: emaste, MaskRay, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D83512
Summary:
A *.cpp file header in LLDB (and in LLDB) should like this:
```
//===-- TestUtilities.cpp -------------------------------------------------===//
```
However in LLDB most of our source files have arbitrary changes to this format and
these changes are spreading through LLDB as folks usually just use the existing
source files as templates for their new files (most notably the unnecessary
editor language indicator `-*- C++ -*-` is spreading and in every review
someone is pointing out that this is wrong, resulting in people pointing out that this
is done in the same way in other files).
This patch removes most of these inconsistencies including the editor language indicators,
all the different missing/additional '-' characters, files that center the file name, missing
trailing `===//` (mostly caused by clang-format breaking the line).
Reviewers: aprantl, espindola, jfb, shafik, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: dexonsmith, wuzish, emaste, sdardis, nemanjai, kbarton, MaskRay, atanasyan, arphaman, jfb, abidh, jsji, JDevlieghere, usaxena95, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D73258
These are the last sections not managed by the DWARFContext object. I
also introduce separate SectionType enums for dwo section variants, as
this is necessary for proper handling of single-file split dwarf.
If not set, the address byte size was implied to be the one of the
host process.
This allows reverting the functional change from 31087b2ae9154, since
now PECOFF does the same as ELF and MachO wrt setting both byte order
and address size on m_data within ParseHeader.
Differential Revision: https://reviews.llvm.org/D71108
If filling in a DataExtractor from an ObjectFile, e.g. via the
ReadSectionData method, the output DataExtractor gets the address
size from the m_data member.
ObjectFile's m_data member is initialized without knowledge about
the address size (so the address size is set based on the host's
sizeof(void*), and at that point within ObjectFile's constructor,
virtual methods implemented in subclasses (like GetAddressByteSize())
can't be called, therefore fix it up when filling in external
DataExtractors.
This makes sure that line tables from executables with a different
address size are parsed properly; previously this tripped up
DWARFDebugLine::LineTable::parse for 32 bit executables on a 64 bit
host, as the address size in the line table (4) didn't match the
one set in the DWARFDataExtractor.
Differential Revision: https://reviews.llvm.org/D70848
This patch adds an implementation of unwinding using PE EH info. It allows to
get almost ideal call stacks on 64-bit Windows systems (except some epilogue
cases, but I believe that they can be fixed with unwind plan disassembly
augmentation in the future).
To achieve the goal the CallFrameInfo abstraction was made. It is based on the
DWARFCallFrameInfo class interface with a few changes to make it less
DWARF-specific.
To implement the new interface for PECOFF object files the class PECallFrameInfo
was written. It uses the next helper classes:
- UnwindCodesIterator helps to iterate through UnwindCode structures (and
processes chained infos transparently);
- EHProgramBuilder with the use of UnwindCodesIterator constructs EHProgram;
- EHProgram is, by fact, a vector of EHInstructions. It creates an abstraction
over the low-level unwind codes and simplifies work with them. It contains
only the information that is relevant to unwinding in the unified form. Also
the required unwind codes are read from the object file only once with it;
- EHProgramRange allows to take a range of EHProgram and to build an unwind row
for it.
So, PECallFrameInfo builds the EHProgram with EHProgramBuilder, takes the ranges
corresponding to every offset in prologue and builds the rows of the resulted
unwind plan. The resulted plan covers the whole range of the function except the
epilogue.
Reviewers: jasonmolenda, asmith, amccarth, clayborg, JDevlieghere, stella.stamenova, labath, espindola
Reviewed By: jasonmolenda
Subscribers: leonid.mashinskiy, emaste, mgorny, aprantl, arichardson, MaskRay, lldb-commits, llvm-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D67347
llvm-svn: 374528
This change is mostly performance-neutral since our regex engine is
fast, but it's IMHO slightly more readable. Also, matching matching
parenthesis is not a great match for regular expressions.
Differential Revision: https://reviews.llvm.org/D68609
llvm-svn: 374082
Originally I wanted to remove the RegularExpression class in Utility and
replace it with llvm::Regex. However, during that transition I noticed
that there are several places where need the regular expression string.
So instead I propose to keep the RegularExpression class and make it a
thin wrapper around llvm::Regex.
This patch also removes the workaround for empty regular expressions.
The result is that we are now (more or less) POSIX conformant.
Differential revision: https://reviews.llvm.org/D66174
llvm-svn: 369153
Summary:
On the heels of D62934, this patch uses the same approach to introduce
llvm RTTI support to the ObjectFile hierarchy. It also replaces the
existing uses of GetPluginName doing run-time type checks with
llvm::dyn_cast and friends.
This formally introduces new dependencies from some other plugins to
ObjectFile plugins. However, I believe this is fine because:
- these dependencies were already kind of there, and the only reason
we could get away with not modeling them explicitly was because the
code was relying on magically knowing what will GetPluginName() return
for a particular kind of object files.
- the dependencies themselves are logical (it makes sense for
SymbolVendorELF to depend on ObjectFileELF), or at least don't
actively get in the way (the JitLoaderGDB->MachO thing).
- they don't introduce any new dependency loops as ObjectFile plugins
don't depend on any other plugins
Reviewers: xiaobai, JDevlieghere, espindola
Subscribers: emaste, mgorny, arichardson, MaskRay, lldb-commits
Differential Revision: https://reviews.llvm.org/D65450
llvm-svn: 367413
This patch replaces explicit calls to log::Printf with the new LLDB_LOGF
macro. The macro is similar to LLDB_LOG but supports printf-style format
strings, instead of formatv-style format strings.
So instead of writing:
if (log)
log->Printf("%s\n", str);
You'd write:
LLDB_LOG(log, "%s\n", str);
This change was done mechanically with the command below. I replaced the
spurious if-checks with vim, since I know how to do multi-line
replacements with it.
find . -type f -name '*.cpp' -exec \
sed -i '' -E 's/log->Printf\(/LLDB_LOGF\(log, /g' "{}" +
Differential revision: https://reviews.llvm.org/D65128
llvm-svn: 366936
A lot of comments in LLDB are surrounded by an ASCII line to delimit the
begging and end of the comment.
Its use is not really consistent across the code base, sometimes the
lines are longer, sometimes they are shorter and sometimes they are
omitted. Furthermore, it looks kind of weird with the 80 column limit,
where the comment actually extends past the line, but not by much.
Furthermore, when /// is used for Doxygen comments, it looks
particularly odd. And when // is used, it incorrectly gives the
impression that it's actually a Doxygen comment.
I assume these lines were added to improve distinguishing between
comments and code. However, given that todays editors and IDEs do a
great job at highlighting comments, I think it's worth to drop this for
the sake of consistency. The alternative is fixing all the
inconsistencies, which would create a lot more churn.
Differential revision: https://reviews.llvm.org/D60508
llvm-svn: 358135
Summary:
This is a preparatory step to enable adding extra unwind strategies by
symbol file plugins. This has been discussed on the lldb-dev mailing
list: <http://lists.llvm.org/pipermail/lldb-dev/2019-February/014703.html>.
Reviewers: jasonmolenda, clayborg, espindola
Subscribers: lemo, emaste, lldb-commits, arichardson
Differential Revision: https://reviews.llvm.org/D58129
llvm-svn: 354033
The `ap` suffix is a remnant of lldb's former use of auto pointers,
before they got deprecated. Although all their uses were replaced by
unique pointers, some variables still carried the suffix.
In r353795 I removed another auto_ptr remnant, namely redundant calls to
::get for unique_pointers. Jim justly noted that this is a good
opportunity to clean up the variable names as well.
I went over all the changes to ensure my find-and-replace didn't have
any undesired side-effects. I hope I didn't miss any, but if you end up
at this commit doing a git blame on a weirdly named variable, please
know that the change was unintentional.
llvm-svn: 353912
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This patch simplifies boolean expressions acorss LLDB. It was generated
using clang-tidy with the following command:
run-clang-tidy.py -checks='-*,readability-simplify-boolean-expr' -format -fix $PWD
Differential revision: https://reviews.llvm.org/D55584
llvm-svn: 349215
This re-commits r348592, which was reverted due to a failing test on
macos.
The issue was that I was passing a null pointer for the
"CreateMemoryInstance" callback when registering ObjectFileBreakpad,
which caused crashes when attemping to load modules from memory. The
correct thing to do is to pass a callback which always returns a null
pointer (as breakpad files are never loaded in inferior memory).
It turns out that there is only one test which exercises this code path,
and it's mac-only, so I've create a new test which should run everywhere
(except windows, as one cannot delete an executable which is being run).
Unfortunately, this test still fails on linux for other reasons, but at
least it gives us something to aim for.
The original commit message was:
This patch adds the scaffolding necessary for lldb to recognise symbol
files generated by breakpad. These (textual) files contain just enough
information to be able to produce a backtrace from a crash
dump. This information includes:
- UUID, architecture and name of the module
- line tables
- list of symbols
- unwind information
A minimal breakpad file could look like this:
MODULE Linux x86_64 0000000024B5D199F0F766FFFFFF5DC30 a.out
INFO CODE_ID 00000000B52499D1F0F766FFFFFF5DC3
FILE 0 /tmp/a.c
FUNC 1010 10 0 _start
1010 4 4 0
1014 5 5 0
1019 5 6 0
101e 2 7 0
PUBLIC 1010 0 _start
STACK CFI INIT 1010 10 .cfa: $rsp 8 + .ra: .cfa -8 + ^
STACK CFI 1011 $rbp: .cfa -16 + ^ .cfa: $rsp 16 +
STACK CFI 1014 .cfa: $rbp 16 +
Even though this data would normally be considered "symbol" information,
in the current lldb infrastructure it is assumed every SymbolFile object
is backed by an ObjectFile instance. So, in order to better interoperate
with the rest of the code (particularly symbol vendors).
In this patch I just parse the breakpad header, which is enough to
populate the UUID and architecture fields of the ObjectFile interface.
The rough plan for followup patches is to expose the individual parts of
the breakpad file as ObjectFile "sections", which can then be used by
other parts of the codebase (SymbolFileBreakpad ?) to vend the necessary
information.
Reviewers: clayborg, zturner, lemo, amccarth
Subscribers: mgorny, fedor.sergeev, markmentovai, lldb-commits
Differential Revision: https://reviews.llvm.org/D55214
llvm-svn: 348773
Summary:
This patch adds the scaffolding necessary for lldb to recognise symbol
files generated by breakpad. These (textual) files contain just enough
information to be able to produce a backtrace from a crash
dump. This information includes:
- UUID, architecture and name of the module
- line tables
- list of symbols
- unwind information
A minimal breakpad file could look like this:
MODULE Linux x86_64 0000000024B5D199F0F766FFFFFF5DC30 a.out
INFO CODE_ID 00000000B52499D1F0F766FFFFFF5DC3
FILE 0 /tmp/a.c
FUNC 1010 10 0 _start
1010 4 4 0
1014 5 5 0
1019 5 6 0
101e 2 7 0
PUBLIC 1010 0 _start
STACK CFI INIT 1010 10 .cfa: $rsp 8 + .ra: .cfa -8 + ^
STACK CFI 1011 $rbp: .cfa -16 + ^ .cfa: $rsp 16 +
STACK CFI 1014 .cfa: $rbp 16 +
Even though this data would normally be considered "symbol" information,
in the current lldb infrastructure it is assumed every SymbolFile object
is backed by an ObjectFile instance. So, in order to better interoperate
with the rest of the code (particularly symbol vendors).
In this patch I just parse the breakpad header, which is enough to
populate the UUID and architecture fields of the ObjectFile interface.
The rough plan for followup patches is to expose the individual parts of
the breakpad file as ObjectFile "sections", which can then be used by
other parts of the codebase (SymbolFileBreakpad ?) to vend the necessary
information.
Reviewers: clayborg, zturner, lemo, amccarth
Subscribers: mgorny, fedor.sergeev, markmentovai, lldb-commits
Differential Revision: https://reviews.llvm.org/D55214
llvm-svn: 348592
Test cases were updated to not use the local compilation dir which
is different between development pc and build bots.
Original commit message:
[LLDB] - Support the single file split DWARF.
DWARF5 spec describes a single file split dwarf case
(when .dwo sections are in the .o files).
Problem is that LLDB does not work correctly in that case.
The issue is that, for example, both .debug_info and .debug_info.dwo
has the same type: eSectionTypeDWARFDebugInfo. And when code searches
section by type it might find the regular debug section
and not the .dwo one.
The patch fixes that. With it, LLDB is able to work with
output compiled with -gsplit-dwarf=single flag correctly.
Differential revision: https://reviews.llvm.org/D52403
llvm-svn: 346855
DWARF5 spec describes a single file split dwarf case
(when .dwo sections are in the .o files).
Problem is that LLDB does not work correctly in that case.
The issue is that, for example, both .debug_info and .debug_info.dwo
has the same type: eSectionTypeDWARFDebugInfo. And when code searches
section by type it might find the regular debug section
and not the .dwo one.
The patch fixes that. With it, LLDB is able to work with
output compiled with -gsplit-dwarf=single flag correctly.
Differential revision: https://reviews.llvm.org/D52296
llvm-svn: 346848
This moves construction of data buffers into the FileSystem class. Like
some of the previous refactorings we don't translate the path yet
because the functionality hasn't been landed in LLVM yet.
Differential revision: https://reviews.llvm.org/D54272
llvm-svn: 346598
This patch removes the logic for resolving paths out of FileSpec and
updates call sites to rely on the FileSystem class instead.
Differential revision: https://reviews.llvm.org/D53915
llvm-svn: 345890
This patch removes the Exists method from FileSpec and updates its uses
with calls to the FileSystem.
Differential revision: https://reviews.llvm.org/D53845
llvm-svn: 345854
This patch removes the GetByteSize method from FileSpec and updates its
uses with calls to the FileSystem.
Differential revision: https://reviews.llvm.org/D53788
llvm-svn: 345812
This implements the support for .debug_loclists section, which is
DWARF 5 version of .debug_loc.
Currently, clang is able to emit it with the use of D53365.
Differential revision: https://reviews.llvm.org/D53436
llvm-svn: 345016
This adds a basic support of the .debug_rnglists section.
Only the DW_RLE_start_length and DW_RLE_end_of_list entries are supported.
Differential revision: https://reviews.llvm.org/D52981
llvm-svn: 344119
This patch improves the support of DWARF5.
Particularly the reporting of source code locations.
Differential revision: https://reviews.llvm.org/D51935
llvm-svn: 342153
If we have a function with signature f(addr_t, AddressClass), it is easy to muddle up the order of arguments without any warnings from compiler. 'enum class' prevents passing integer in place of AddressClass and vice versa.
llvm-svn: 335599
SetFile has an optional style argument which defaulted to the native
style. This patch makes that argument mandatory so clients of the
FileSpec class are forced to think about the correct syntax.
At the same time this introduces a (protected) convenience method to
update the file from within the FileSpec class that keeps the current
style.
These two changes together prevent a potential pitfall where the style
might be forgotten, leading to the path being updated and the style
unintentionally being changed to the host style.
llvm-svn: 334663
In an effort to make the .debug_types patch smaller, breaking out the part that reads the .debug_types from object files into a separate patch
Differential Revision: https://reviews.llvm.org/D46529
llvm-svn: 331777
This is intended as a clean up after the big clang-format commit
(r280751), which unfortunately resulted in many of the comment
paragraphs in LLDB being very hard to read.
FYI, the script I used was:
import textwrap
import commands
import os
import sys
import re
tmp = "%s.tmp"%sys.argv[1]
out = open(tmp, "w+")
with open(sys.argv[1], "r") as f:
header = ""
text = ""
comment = re.compile(r'^( *//) ([^ ].*)$')
special = re.compile(r'^((([A-Z]+[: ])|([0-9]+ )).*)|(.*;)$')
for line in f:
match = comment.match(line)
if match and not special.match(match.group(2)):
# skip intentionally short comments.
if not text and len(match.group(2)) < 40:
out.write(line)
continue
if text:
text += " " + match.group(2)
else:
header = match.group(1)
text = match.group(2)
continue
if text:
filled = textwrap.wrap(text, width=(78-len(header)),
break_long_words=False)
for l in filled:
out.write(header+" "+l+'\n')
text = ""
out.write(line)
os.rename(tmp, sys.argv[1])
Differential Revision: https://reviews.llvm.org/D46144
llvm-svn: 331197