Summary:
Hopefully this also clarifies exactly when and why we're rewriting
certiain S_LOCALs using reference types: We're using the reference type
to stand in for a zero-offset load.
Reviewers: inglorion
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D37309
llvm-svn: 312247
Summary:
DbgVariableLocation::extractFromMachineInstruction originally
returned a boolean indicating success. This change makes it return
an Optional<DbgVariableLocation> so we cannot try to access the fields
of the struct if they aren't valid.
Reviewers: aprantl, rnk, zturner
Subscribers: llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D37279
llvm-svn: 312143
Summary:
Some variables show up in Visual Studio as "optimized out" even in -O0
-Od builds. This change fixes two issues that would cause this to
happen. The first issue is that not all DIExpressions we generate were
recognized by the CodeView writer. This has been addressed by adding
support for DW_OP_constu, DW_OP_minus, and DW_OP_plus. The second
issue is that we had no way to encode DW_OP_deref in CodeView. We get
around that by changinge the type we encode in the debug info to be
a reference to the type in the source code.
This fixes PR34261.
The reland adds two extra checks to the original: It checks if the
DbgVariableLocation is valid before checking any of its fields, and
it only emits ranges with nonzero registers.
Reviewers: aprantl, rnk, zturner
Reviewed By: rnk
Subscribers: mgorny, llvm-commits, aprantl, hiraditya
Differential Revision: https://reviews.llvm.org/D36907
llvm-svn: 312034
This fixes a problem introduced 311957, where the compiler would crash
with "fatal error: error in backend: unknown codeview register".
llvm-svn: 311969
Summary:
Some variables show up in Visual Studio as "optimized out" even in -O0
-Od builds. This change fixes two issues that would cause this to
happen. The first issue is that not all DIExpressions we generate were
recognized by the CodeView writer. This has been addressed by adding
support for DW_OP_constu, DW_OP_minus, and DW_OP_plus. The second
issue is that we had no way to encode DW_OP_deref in CodeView. We get
around that by changinge the type we encode in the debug info to be
a reference to the type in the source code.
This fixes PR34261.
Reviewers: aprantl, rnk, zturner
Reviewed By: rnk
Subscribers: mgorny, llvm-commits, aprantl, hiraditya
Differential Revision: https://reviews.llvm.org/D36907
llvm-svn: 311957
S_UDT symbols are the debugger's "index" for all the structs,
typedefs, classes, and enums in a program. If any of those
structs/classes don't have a complete declaration, or if there
is a typedef to something that doesn't have a complete definition,
then emitting the S_UDT is unhelpful because it doesn't give
the debugger enough information to do anything useful. On the
other hand, it results in a huge size blow-up in the resulting
PDB, which is exacerbated by an order of magnitude when linking
with /DEBUG:FASTLINK.
With this patch, we drop S_UDT records for types that refer either
directly or indirectly (e.g. through a typedef, pointer, etc) to
a class/struct/union/enum without a complete definition. This
brings us about 50% of the way towards parity with /DEBUG:FASTLINK
PDBs generated from cl-compiled object files.
Differential Revision: https://reviews.llvm.org/D37162
llvm-svn: 311904
Previously we limited ourselves to only emitting nested classes, but we
need other kinds of types as well.
This fixes the Visual Studio STL visualizers, so that users can
visualize std::string and other objects.
llvm-svn: 310410
In the last half-dozen commits to LLVM I removed code that became dead
after removing the offset parameter from llvm.dbg.value gradually
proceeding from IR towards the backend. Before I can move on to
DwarfDebug and friends there is one last side-called offset I need to
remove: This patch modifies PrologEpilogInserter's use of the
DBG_VALUE's offset argument to use a DIExpression instead. Because the
PrologEpilogInserter runs at the Machine level I had to play a little
trick with a named llvm.dbg.mir node to get the DIExpressions to print
in MIR dumps (which print the llvm::Module followed by the
MachineFunction dump).
I also had to add rudimentary DwarfExpression support to CodeView and
as a side-effect also fixed a bug (CodeViewDebug::collectVariableInfo
was supposed to give up on variables with complex DIExpressions, but
would fail to do so for fragments, which are also modeled as
DIExpressions).
With this last holdover removed we will have only one canonical way of
representing offsets to debug locations which will simplify the code
in DwarfDebug (and future versions of CodeViewDebug once it starts
handling more complex expressions) and make it easier to reason about.
This patch is NFC-ish: All test case changes are for assembler
comments and the binary output does not change.
rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D36125
llvm-svn: 309751
When the first instruction of a basic block has no location (consider a
LEA materializing the address of an alloca for a call), we want to start
the line table for the block with the first valid source location in the
block. We need to ignore DBG_VALUE instructions during this scan to get
decent line tables.
llvm-svn: 309628
If the instructions at the beginning of the block have no location,
we're better off using the location of the first instruction in the
current basic block. At the very least, that instruction post-dominates
this one, whereas if we don't emit a .cv_loc directive, we end up using
the potentially invalid location that falls through from the previous
block.
We could probably do better here by emitting some kind of ".cv_loc end"
directive that stops the line table entry of the previous .cv_loc
directive from bleeding out of its basic block. This would improve the
line table when an entire MBB has no valid location info.
llvm-svn: 306889
This creates a new library called BinaryFormat that has all of
the headers from llvm/Support containing structure and layout
definitions for various types of binary formats like dwarf, coff,
elf, etc as well as the code for identifying a file from its
magic.
Differential Revision: https://reviews.llvm.org/D33843
llvm-svn: 304864
Previously, every time we wanted to serialize a field list record, we
would create a new copy of FieldListRecordBuilder, which would in turn
create a temporary instance of TypeSerializer, which itself had a
std::vector<> that was about 128K in size. So this 128K allocation was
happening every time. We can re-use the same instance over and over, we
just have to clear its internal hash table and seen records list between
each run. This saves us from the constant re-allocations.
This is worth an ~18.5% speed increase (3.75s -> 3.05s) in my tests.
Differential Revision: https://reviews.llvm.org/D33506
llvm-svn: 303919
MachineInstructions that don't generate any code (such as
IMPLICIT_DEFs) should not generate any debug info either.
Fixes PR33107.
https://bugs.llvm.org/show_bug.cgi?id=33107
This reapplies r303566 without any modifications. The stage2 build
failures persisted even after reverting this patch, and looking back
through history, it looks like these tests are flaky.
llvm-svn: 303575
MachineInstructions that don't generate any code (such as
IMPLICIT_DEFs) should not generate any debug info either.
Fixes PR33107.
https://bugs.llvm.org/show_bug.cgi?id=33107
llvm-svn: 303566
This was originally reverted because it was a breaking a bunch
of bots and the breakage was not surfacing on Windows. After much
head-scratching this was ultimately traced back to a bug in the
lit test runner related to its pipe handling. Now that the bug
in lit is fixed, Windows correctly reports these test failures,
and as such I have finally (hopefully) fixed all of them in this
patch.
llvm-svn: 303446
This is a squash of ~5 reverts of, well, pretty much everything
I did today. Something is seriously broken with lit on Windows
right now, and as a result assertions that fire in tests are
triggering failures. I've been breaking non-Windows bots all
day which has seriously confused me because all my tests have
been passing, and after running lit with -a to view the output
even on successful runs, I find out that the tool is crashing
and yet lit is still reporting it as a success!
At this point I don't even know where to start, so rather than
leave the tree broken for who knows how long, I will get this
back to green, and then once lit is fixed on Windows, hopefully
hopefully fix the remaining set of problems for real.
llvm-svn: 303409
Right now we have multiple notions of things that represent collections of
types. Most commonly used are TypeDatabase, which is supposed to keep
mappings from TypeIndex to type name when reading a type stream, which
happens when reading PDBs. And also TypeTableBuilder, which is used to
build up a collection of types dynamically which we will later serialize
(i.e. when writing PDBs).
But often you just want to do some operation on a collection of types, and
you may want to do the same operation on any kind of collection. For
example, you might want to merge two TypeTableBuilders or you might want
to merge two type streams that you loaded from various files.
This dichotomy between reading and writing is responsible for a lot of the
existing code duplication and overlapping responsibilities in the existing
CodeView library classes. For example, after building up a
TypeTableBuilder with a bunch of type records, if we want to dump it we
have to re-invent a bunch of extra glue because our dumper takes a
TypeDatabase or a CVTypeArray, which are both incompatible with
TypeTableBuilder.
This patch introduces an abstract base class called TypeCollection which
is shared between the various type collection like things. Wherever we
previously stored a TypeDatabase& in some common class, we now store a
TypeCollection&.
The advantage of this is that all the details of how the collection are
implemented, such as lazy deserialization of partial type streams, is
completely transparent and you can just treat any collection of types the
same regardless of where it came from.
Differential Revision: https://reviews.llvm.org/D33293
llvm-svn: 303388
There is often a lot of boilerplate code required to visit a type
record or type stream. The #1 use case is that you have a sequence
of bytes that represent one or more records, and you want to
deserialize each one, switch on it, and call a callback with the
deserialized record that the user can examine. Currently this
requires at least 6 lines of code:
codeview::TypeVisitorCallbackPipeline Pipeline;
Pipeline.addCallbackToPipeline(Deserializer);
Pipeline.addCallbackToPipeline(MyCallbacks);
codeview::CVTypeVisitor Visitor(Pipeline);
consumeError(Visitor.visitTypeRecord(Record));
With this patch, it becomes one line of code:
consumeError(codeview::visitTypeRecord(Record, MyCallbacks));
This is done by having the deserialization happen internally inside
of the visitTypeRecord function. Since this is occasionally not
desirable, the function provides a 3rd parameter that can be used
to change this behavior.
Hopefully this can significantly reduce the barrier to entry
to using the visitation infrastructure.
Differential Revision: https://reviews.llvm.org/D33245
llvm-svn: 303271
This function gives the wrong answer on some non-ELF platforms in some
cases. The function that does the right thing lives in Mangler.h. To try to
discourage people from using this function, give it a different name.
Differential Revision: https://reviews.llvm.org/D33162
llvm-svn: 303134
Fixes inalloca parameters, which previously all pointed to the same
offset. Extend the test to use llvm-readobj so that we can test the
offset in a readable way.
llvm-svn: 302578
Most of the time we know exactly how many type records we
have in a list, and we want to use the visitor to deserialize
them into actual records in a database. Previously we were
just using push_back() every time without reserving the space
up front in the vector. This is obviously terrible from a
performance standpoint, and it's not uncommon to have PDB
files with half a million type records, where the performance
degredation was quite noticeable.
llvm-svn: 302302
Compiler emitted synthetic types may not have an associated DIFile
(translation unit). In such a case, when generating CodeView debug type
information, we would attempt to compute an absolute filepath which
would result in a segfault due to a NULL DIFile*. If there is no source
file associated with the type, elide the type index entry for the type
and record the type information. This actually results in higher
fidelity debug information than clang/C2 as of this writing.
Resolves PR32668!
llvm-svn: 302085
Previously we wrote line information and file checksum
information, but we did not write information about inlinee
lines and functions. This patch adds support for that.
llvm-svn: 301936
We have a lot of very similarly named classes related to
dealing with module debug info. This patch has NFC, it just
renames some classes to be more descriptive (albeit slightly
more to type). The mapping from old to new class names is as
follows:
Old | New
ModInfo | DbiModuleDescriptor
ModuleSubstream | ModuleDebugFragment
ModStream | ModuleDebugStream
With the corresponding Builder classes renamed accordingly.
Differential Revision: https://reviews.llvm.org/D32506
llvm-svn: 301555
DISubprogram currently has 10 pointer operands, several of which are
often nullptr. This patch reduces the amount of memory allocated by
DISubprogram by rearranging the operands such that containing type,
template params, and thrown types come last, and are only allocated
when they are non-null (or followed by non-null operands).
This patch also eliminates the entirely unused DisplayName operand.
This saves up to 4 pointer operands per DISubprogram. (I tried
measuring the effect on peak memory usage on an LTO link of an X86
llc, but the results were very noisy).
This reapplies r301498 with an attempted workaround for g++.
Differential Revision: https://reviews.llvm.org/D32560
llvm-svn: 301501
DISubprogram currently has 10 pointer operands, several of which are
often nullptr. This patch reduces the amount of memory allocated by
DISubprogram by rearranging the operands such that containing type,
template params, and thrown types come last, and are only allocated
when they are non-null (or followed by non-null operands).
This patch also eliminates the entirely unused DisplayName operand.
This saves up to 4 pointer operands per DISubprogram. (I tried
measuring the effect on peak memory usage on an LTO link of an X86
llc, but the results were very noisy).
llvm-svn: 301498
If we have an array of a user-defined aggregates for which there was an
ODR violation, then the array size will not necessarily match the number
of elements times the size of the element.
Fixes PR32383
llvm-svn: 298750
After several smaller patches to get most of the core improvements
finished up, this patch is a straight move and header fixup of
the source.
Differential Revision: https://reviews.llvm.org/D30266
llvm-svn: 296810
Before the endianness was specified on each call to read
or write of the StreamReader / StreamWriter, but in practice
it's extremely rare for streams to have data encoded in
multiple different endiannesses, so we should optimize for the
99% use case.
This makes the code cleaner and more general, but otherwise
has NFC.
llvm-svn: 296415
This was reverted because it was breaking some builds, and
because of incorrect error code usage. Since the CL was
large and contained many different things, I'm resubmitting
it in pieces.
This portion is NFC, and consists of:
1) Renaming classes to follow a consistent naming convention.
2) Fixing the const-ness of the interface methods.
3) Adding detailed doxygen comments.
4) Fixing a few instances of passing `const BinaryStream& X`. These
are now passed as `BinaryStreamRef X`.
llvm-svn: 296394
r296215, "[PDB] General improvements to Stream library."
r296217, "Disable BinaryStreamTest.StreamReaderObject temporarily."
r296220, "Re-enable BinaryStreamTest.StreamReaderObject."
r296244, "[PDB] Disable some tests that are breaking bots."
r296249, "Add static_cast to silence -Wc++11-narrowing."
std::errc::no_buffer_space should be used for OS-oriented errors for socket transmission.
(Seek discussions around llvm/xray.)
I could substitute s/no_buffer_space/others/g, but I revert whole them ATM.
Could we define and use LLVM errors there?
llvm-svn: 296258
This adds various new functionality and cleanup surrounding the
use of the Stream library. Major changes include:
* Renaming of all classes for more consistency / meaningfulness
* Addition of some new methods for reading multiple values at once.
* Full suite of unit tests for reader / writer functionality.
* Full set of doxygen comments for all classes.
* Streams now store their own endianness.
* Fixed some bugs in a few of the classes that were discovered
by the unit tests.
llvm-svn: 296215
This is part of a larger effort to get the Stream code moved
up to Support. I don't want to do it in one large patch, in
part because the changes are so big that it will treat everything
as file deletions and add, losing history in the process.
Aside from that though, it's just a good idea in general to
make small changes.
So this change only changes the names of the Stream related
source files, and applies necessary source fix ups.
llvm-svn: 296211
Previously the type dumper itself was passed around to a lot of different
places and manipulated in ways that were more appropriate on the type
database. For example, the entire TypeDumper was passed into the symbol
dumper, when all the symbol dumper wanted to do was lookup the name of a
TypeIndex so it could print it. That's what the TypeDatabase is for --
mapping type indices to names.
Another example is how if the user runs llvm-pdbdump with the option to
dump symbols but not types, we still have to visit all types so that we
can print minimal information about the type of a symbol, but just without
dumping full symbol records. The way we did this before is by hacking it
up so that we run everything through the type dumper with a null printer,
so that the output goes to /dev/null. But really, we don't need to dump
anything, all we want to do is build the type database. Since
TypeDatabaseVisitor now exists independently of TypeDumper, we can do
this. We just build a custom visitor callback pipeline that includes a
database visitor but not a dumper.
All the hackery around printers etc goes away. After this patch, we could
probably even delete the entire CVTypeDumper class since really all it is
at this point is a thin wrapper that hides the details of how to build a
useful visitation pipeline. It's not a priority though, so CVTypeDumper
remains for now.
After this patch we will be able to easily plug in a different style of
type dumper by only implementing the proper visitation methods to dump
one-line output and then sticking it on the pipeline.
Differential Revision: https://reviews.llvm.org/D28524
llvm-svn: 291724
We were starting to get some name clashes between llvm-pdbdump
and the common CodeView framework, so I took this opportunity
to rename a bunch of files to more accurately describe their
usage. This also helps in llvm-pdbdump to distinguish
between different files and whether they are used for pretty
dump mode or raw dump mode.
llvm-svn: 291627
This creates a centralized class in which to store type records.
It stores types as an array of entries, which matches the
notion of a type stream being a topologically sorted DAG.
Logic to build up such a database was already being used in
CVTypeDumper, so CVTypeDumper is now updated to to read from
a TypeDatabase which is filled out by an earlier visitor in
the pipeline.
Differential Revision: https://reviews.llvm.org/D28486
llvm-svn: 291626