This patch extends the `overloadable` attribute to allow for one
function with a given name to not be marked with the `overloadable`
attribute. The overload without the `overloadable` attribute will not
have its name mangled.
So, the following code is now legal:
void foo(void) __attribute__((overloadable));
void foo(int);
void foo(float) __attribute__((overloadable));
In addition, this patch fixes a bug where we'd accept code with
`__attribute__((overloadable))` inconsistently applied. In other words,
we used to accept:
void foo(void);
void foo(void) __attribute__((overloadable));
But we will do this no longer, since it defeats the original purpose of
requiring `__attribute__((overloadable))` on all redeclarations of a
function.
This breakage seems to not be an issue in practice, since the only code
I could find that had this pattern often looked like:
void foo(void);
void foo(void) __attribute__((overloadable)) __asm__("foo");
void foo(int) __attribute__((overloadable));
...Which can now be simplified by simply removing the asm label and
overloadable attribute from the redeclaration of `void foo(void);`
Differential Revision: https://reviews.llvm.org/D32332
llvm-svn: 306467
'HandleEndifDirective' asserts that 'WasSkipping' is false, so switch to using 'FoundNonSkip' as the hint for 'SingleFileParseMode' to keep going with parsing.
llvm-svn: 305940
This is useful for being able to parse the preprocessor directive blocks even if the header, that defined the macro that is checked, hasn't been included.
Differential Revision: https://reviews.llvm.org/D34263
llvm-svn: 305797
for preprocessing
r300667 added support for editor placeholder to Clang. That commit didn’t take
into account that users who use Clang for preprocessing only (-E) will get the
"editor placeholder in source file" error when preprocessing their source
(PR33394). This commit ensures that Clang doesn't lex editor placeholders when
running a preprocessor only action.
rdar://32718000
Differential Revision: https://reviews.llvm.org/D34256
llvm-svn: 305576
correct getNumArguments
StringifiedArguments is allocated (resized) based on the size the
getNumArguments function. However, this function ACTUALLY currently
returns the amount of total UnexpArgTokens which is minimum the same as
the new implementation of getNumMacroArguments, since empty/omitted arguments
result in 1 UnexpArgToken, and included ones at minimum include 2
(1 for the arg itself, 1 for eof).
This patch renames the otherwise unused getNumArguments to be more clear
that it is the number of arguments that the Macro expects, and thus the maximum
number that can be stringified. This patch also replaces the explicit memset
(which results in value instantiation of the new tokens, PLUS clearing the
memory) with brace initialization.
Differential Revision: https://reviews.llvm.org/D32046
llvm-svn: 305425
UBSan found an issue with a nullptr being assigned to a reference.
This was because a following function went back and checked the
identifier in the CPPOperatorName case. This patch corrects that
location with the original logic as well.
llvm-svn: 305128
as part of a compilation.
This is intended for two purposes:
1) Writing self-contained test cases for modules: we can now write a single
source file test that builds some number of module files on the side and
imports them.
2) Debugging / test case reduction. A single-source testcase is much more
amenable to reduction, compared to a VFS tarball or .pcm files.
llvm-svn: 305101
to support operator keywords used in Windows SDK, alter token type when
seen in system headers
Hello, I submitted D33505 to address this problem, but the
proposal was rejected as too big a hammer.
This change will allow clang to parse the WindowsSDK header <query.h>
which uses the operator name "or" as a field name. Treat cpp operator
keywords as ordinary identifiers inside the Microsoft headers, but
treat them as usual in the user's program.
Original Submitter: Melanie Blower (mibintc)
Differential Revision: https://reviews.llvm.org/D33782
llvm-svn: 305087
This is useful for parsing a single file, as a fast/inaccurate 'mode' that can still provide declarations from the file, like the classes and their methods.
llvm-svn: 305044
This patch adds support for a `header` declaration in a module map to specify
certain `stat` information (currently, size and mtime) about that header file.
This has two purposes:
- It removes the need to eagerly `stat` every file referenced by a module map.
Instead, we track a list of unresolved header files with each size / mtime
(actually, for simplicity, we track submodules with such headers), and when
attempting to look up a header file based on a `FileEntry`, we check if there
are any unresolved header directives with that `FileEntry`'s size / mtime and
perform deferred `stat`s if so.
- It permits a preprocessed module to be compiled without the original files
being present on disk. The only reason we used to need those files was to get
the `stat` information in order to do header -> module lookups when using the
module. If we're provided with the `stat` information in the preprocessed
module, we can avoid requiring the files to exist.
Unlike most `header` directives, if a `header` directive with `stat`
information has no corresponding on-disk file the enclosing module is *not*
marked unavailable (so that behavior is consistent regardless of whether we've
resolved a header directive, and so that preprocessed modules don't get marked
unavailable). We could actually do this for all `header` directives: the only
reason we mark the module unavailable if headers are missing is to give a
diagnostic slightly earlier (rather than waiting until we actually try to build
the module / load and validate its .pcm file).
Differential Revision: https://reviews.llvm.org/D33703
llvm-svn: 304515
to the original module map.
Also use the path and name of the original module map when emitting that
information into the .pcm file. The upshot of this is that the produced .pcm
file will track information for headers in their original locations (where the
module was preprocessed), not relative to whatever directory the preprocessed
module map was in when it was built.
llvm-svn: 304346
Previously, a preamble only included #if blocks (and friends like
ifdef) if there was a corresponding #endif before any declaration or
definition. The problem is that any header file that uses include guards
will not have a preamble generated, which can make code-completion very
slow.
To prevent errors about unbalanced preprocessor conditionals in the
preamble, and unbalanced preprocessor conditionals after a preamble
containing unfinished conditionals, the conditional stack is stored
in the pch file.
This fixes PR26045.
Differential Revision: http://reviews.llvm.org/D15994
llvm-svn: 304207
and it has an include guard, produce callbacks for a module import, not for a
skipped non-modular header.
Fixes -E output when preprocessing a module to list these cases as a module
import, rather than suppressing the #include and losing the import side effect.
llvm-svn: 304183
This is an initial commit to allow using it with constant expressions, a follow-up commit will enable full support for it in ObjC methods.
llvm-svn: 303712
C++14 added user-defined literal support for complex numbers so that you can
write something like "complex<double> val = 2i". However, there is an existing
GNU extension supporting this syntax and interpreting the result as a _Complex
type.
This changes parsing so that such literals are interpreted in terms of C++14's
operators if an overload is present but otherwise falls back to the original
GNU extension.
llvm-svn: 303694
This allows #line directives to appear in system headers that have code
that clang would normally warn on. This is compatible with GCC, which is
easy to test by running `gcc -E`.
Fixes PR30752
llvm-svn: 303582
remove the mechanism for doing so.
This mechanism was incorrect in the presence of preprocessed modules (and
#pragma clang module begin/end).
llvm-svn: 303469
When reaching the end of a module, we used to convert its macros to
ModuleMacros but also leave them in the MacroDirective chain for the
identifier. This meant that every lookup of such a macro would find two
(identical) definitions. It also made it difficult to determine the correct
owner for a macro when reaching the end of a module: the most recent
MacroDirective in the chain could be from an #included submodule rather than
the current module.
Simplify this: whenever we convert a MacroDirective to a ModuleMacro when
leaving a module, clear out the MacroDirective chain for that identifier, and
just rely on the ModuleMacro to provide the macro definition information.
(We don't want to do this for local submodule visibility mode, because in that
mode we maintain a distinct MacroDirective chain for each submodule, and we
need to keep around the prior MacroDirective in case we re-enter the submodule
-- for instance, if its header is #included more than once in a module build,
we need the include guard directive to stick around. But the problem doesn't
arise in this case for the same reason: each submodule has its own
MacroDirective chain, so the macros don't leak out of submodules in the first
place.)
This reinstates r302932, reverted in r302947, with a fix for a bug that
resulted in us sometimes losing macro definitions due to failing to clear out
the overridden module macro list when promoting a directive to a module macro.
llvm-svn: 303468
retrieving the identifer info for an Objective-C keyword
This commit fixes an assertion that's triggered in getIdentifier when the token
is an annotation token.
rdar://32225463
llvm-svn: 303246
When reaching the end of a module, we used to convert its macros to
ModuleMacros but also leave them in the MacroDirective chain for the
identifier. This meant that every lookup of such a macro would find two
(identical) definitions. It also made it difficult to determine the correct
owner for a macro when reaching the end of a module: the most recent
MacroDirective in the chain could be from an #included submodule rather than
the current module.
Simplify this: whenever we convert a MacroDirective to a ModuleMacro when
leaving a module, clear out the MacroDirective chain for that identifier, and
just rely on the ModuleMacro to provide the macro definition information.
(We don't want to do this for local submodule visibility mode, because in that
mode we maintain a distinct MacroDirective chain for each submodule, and we
need to keep around the prior MacroDirective in case we re-enter the submodule
-- for instance, if its header is #included more than once in a module build,
we need the include guard directive to stick around. But the problem doesn't
arise in this case for the same reason: each submodule has its own
MacroDirective chain, so the macros don't leak out of submodules in the first
place.)
llvm-svn: 302932
In r298391 we fixed the umbrella framework model to work when submodules
named "Private" are used. This complements the work by allowing the
umbrella framework model to work in general.
rdar://problem/31790067
llvm-svn: 302491
To support this, an optional marker "#pragma clang module contents" is
recognized in module map files, and the rest of the module map file from that
point onwards is treated as the source of the module. Preprocessing a module
map produces the input module followed by the marker and then the preprocessed
contents of the module.
Ignoring line markers, a preprocessed module might look like this:
module A {
header "a.h"
}
#pragma clang module contents
#pragma clang module begin A
// ... a.h ...
#pragma clang module end
The preprocessed output generates line markers, which are not accepted by the
module map parser, so -x c++-module-map-cpp-output should be used to compile
such outputs.
A couple of major parts do not work yet:
1) The files that are listed in the module map must exist on disk, in order to
build the on-disk header -> module lookup table in the PCM file. To fix
this, we need the preprocessed output to track the file size and other stat
information we might use to build the lookup table.
2) Declaration ownership semantics don't work properly yet, since mapping from
a source location to a module relies on mapping from FileIDs to modules,
which we can't do if module transitions can occur in the middle of a file.
llvm-svn: 302309
This patch adds a fix-it for the -Wunguarded-availability warning. This fix-it
is similar to the Swift one: it suggests that you wrap the statement in an
`if (@available)` check. The produced fixits are indented (just like the Swift
ones) to make them look nice in Xcode's fix-it preview.
rdar://31680358
Differential Revision: https://reviews.llvm.org/D32424
llvm-svn: 302253
The whitespace should come from the argument name in the macro
expansion, rather than from the token passed to the macro (same as it
does when not pasting).
Added a new test case for the change in behavior to stringize_space.c.
FileCheck'ized macro_paste_commaext.c, tweaked the test case, and
added a comment; no behavioral change to this test.
Differential Revision: https://reviews.llvm.org/D30427
llvm-svn: 302195
These pragmas are intended to simulate the effect of entering or leaving a file
with an associated module. This is not completely implemented yet: declarations
between the pragmas will not be attributed to the correct module, but macro
visibility is already functional.
Modules named by #pragma clang module begin must already be known to clang (in
some module map that's either loaded or on the search path).
llvm-svn: 302098
Many of our supported configurations support modules but do not have any
first-class syntax to perform a module import. This leaves us with a problem:
there is no way to represent the expansion of a #include that imports a module
in the -E output for such languages. (We don't want to just leave it as a
#include because that requires the consumer of the preprocessed source to have
the same file system layout and include paths as the creator.)
This patch adds a new pragma:
#pragma clang module import MODULE.NAME.HERE
that imports a module, and changes -E and -frewrite-includes to use it when
rewriting a #include that maps to a module import. We don't make any attempt
to use a native language syntax import if one exists, to get more consistent
output. (If in the future, @import and #include have different semantics in
some way, the pragma will track the #include semantics.)
llvm-svn: 301725
One of the -Wincomplete-umbrella warnings diagnoses when a header is present in
the directory but it's not present in the umbrella header. Currently, this
warning only happens on top level modules; any submodule using an umbrella
header does not get this warning. Fix that by also considering the submodules.
Differential Revision: https://reviews.llvm.org/D32576
rdar://problem/22623686
llvm-svn: 301597
If a file search involves a header map, suppress
-Wnonportable-include-path. It's firing lots of false positives for
framework authors internally, and it's not trivial to fix.
Consider a framework called "Foo" with a main (installed) framework header
"Foo/Foo.h". It's atypical for "Foo.h" to actually live inside a
directory called "Foo" in the source repository. Instead, the
build system generates a header map while building the framework.
If Foo.h lives at the top-level of the source repository (common), and
the git repo is called ssh://some.url/foo.git, then the header map will
have something like:
Foo/Foo.h -> /Users/myname/code/foo/Foo.h
where "/Users/myname/code/foo" is the clone of ssh://some.url/foo.git.
After #import <Foo/Foo.h>, the current implementation of
-Wnonportable-include-path will falsely assume that Foo.h was found in a
nonportable way, because of the name of the git clone (.../foo/Foo.h).
However, that directory name was not involved in the header search at
all.
This commit adds an extra parameter to Preprocessor::LookupFile and
HeaderSearch::LookupFile to track if the search used a header map,
making it easy to suppress the warning. Longer term, once we find a way
to avoid the false positive, we should turn the warning back on.
rdar://problem/28863903
llvm-svn: 301592
This reverts commit r301449. It breaks the build with:
MacroPPCallbacks.h:114:50: error: non-virtual member function marked 'override' hides virtual member function
llvm-svn: 301469
Summary:
The PPCallbacks::MacroUndefined callback is currently insufficient for clients that need to track the MacroDirectives.
This patch adds an additional argument to PPCallbacks::MacroUndefined that is the undef MacroDirective.
Reviewers: bruno, manmanren
Reviewed By: bruno
Subscribers: nemanjai, cfe-commits
Differential Revision: https://reviews.llvm.org/D29923
llvm-svn: 301449
Drive-by fix (noticed while working on https://reviews.llvm.org/D32205):
DebugOverflowStack() is supposed to provoke a stack overflow, however
LLVM was smart enough to use the red-zone and fold the load into a tail
jump on x86_64 optimizing this to an endless loop instead of a stack
overflow.
llvm-svn: 301218