The reason of collecting all undefines in vector is that during reading files we already need to have Symtab created. Or like was done in that patch - to put undefines from scripts somewhere to delay Symtab.addUndefinedOpt() call.
Differential Revision: http://reviews.llvm.org/D13870
llvm-svn: 250711
Instead of specifically creating .plt entries for weak undef symbols, mirror
the logic in r250584, and use canBePreempted to determine is a REL24 relocation
needs a .plt entry. This might cause relocateOne to be called for a weak undef
symbol, with a REL24 relocation, but ignore this as a special case (this will
cause SA == 0, which won't happen under any other circumstance).
llvm-svn: 250597
There is sometimes no need to generate relocation via PLT.
Example - when symbol is not undefined and we are not creating shared library. Then we can create relative relocation instead of referencing and creating PLT records.
Differential Revision: http://reviews.llvm.org/D13835
llvm-svn: 250584
When we have a R_PPC64_ADDR64 for a weak undef symbol, which thus resolves to
0, and we're creating a shared library, we need to make sure that it stays 0
(because code that conditionally calls the weak function tests for this).
Unfortunately, we were creating a R_PPC64_RELATIVE for these relocation
targets, making the address of the undefined weak symbol equal to the base
address of the shared library (which is non-zero). In general, we should not be
creating RelativeReloc relocs for undef weak symbols.
llvm-svn: 250558
R_PPC64_TOC does not have an associated symbol, but does have a non-zero VA
that target-specific code must compute using some non-trivial rule. We
handled this as a special case in PPC64TargetInfo::relocateOne, where
we knew to write this special address, but that did not work when creating shared
libraries. The special TOC address needs to be the subject of a
R_PPC64_RELATIVE relocation, and so we also need to know how to encode this
special address in the addend of that relocation.
Thus, some target-specific logic is necessary when creating R_PPC64_RELATIVE as
well. To solve this problem, we teach getLocalRelTarget to handle R_PPC64_TOC
as a special case. This allows us to remove the special case in
PPC64TargetInfo::relocateOne (simplifying code there), and naturally allows the
existing logic to do the right thing when creating associated R_PPC64_RELATIVE
relocations for shared libraries.
llvm-svn: 250555
If a section name is valid as a C identifier (which is rare because of
the leading '.'), linkers are expected to define __start_<secname> and
__stop_<secname> symbols. They are at beginning and end of the section,
respectively. This is not requested by the ELF standard, but GNU ld and
gold provide this feature.
llvm-svn: 250432
Unfortunately, the check was not as dead as I had thought, and adjusting the
starting VA again exposed the problem. We end up trying to relocate the bl
(using a 24-bit relative offset) to a symbol address of zero, and in general,
that does not fit.
Thus, reverting for now, and adding a test case.
llvm-svn: 250423
After some additional post-commit (post-revert) discussion and research, this
reverts, in part, r250205, so the ABI-recommended starting address can be used
on PPC64 (as is done by other linkers).
Also, this addresses the FIXME in ELF/Writer.cpp by making VAStart a
target-dependent property.
llvm-svn: 250378
If an argument for --entry is a number, that's not a symbol name but
an absolute address. If that's the case, the address is directly set
to ELF header's e_entry.
llvm-svn: 250334
Previously, we used input section names as output section names.
That resulted that we created lots of sections for comdat
or -f{function,data}-section sections.
This patch reduces the number of sections by dropping suffix from
all section names which start with ".text.", ".rodata.", ".data."
or ".bss.". GNU linker does this using the internal linker script,
but for LLD I chose to do that directly.
Interestingly, this makes the linker faster. Time to link Clang
is this.
Before:
real 0m0.537s
user 0m0.433s
sys 0m0.104s
After:
real 0m0.390s
user 0m0.268s
sys 0m0.120s
It make sense because previously we created 57659 sections now only 27.
llvm-svn: 250315
- Make the `MipsTargetInfo` template class with `ELFType` argument. Use
the argument to select an appropriate relocation type and read/write
routines.
- Add template function `add32` to add-and-write relocation value in
both big and little endian cases. Keep the `add32le` to reduce code
changes.
Differential Revision: http://reviews.llvm.org/D13723
llvm-svn: 250297
The documentation says: "You may separate commands using semicolons",
so they seem to be optional.
Differential Revision: http://reviews.llvm.org/D13703
llvm-svn: 250223
This has turned out to be unnecessary, and while some ability to set VAStart
will be needed at some point, this is not clearly the right direction.
llvm-svn: 250205
BSD's DSO files have undefined symbol "__progname" which is defined
in crt1.o. On that system, both user programs and system shared
libraries depend on each other.
In general, we need to put symbols defined by user programs which are
referenced by shared libraries to user program's .dynsym.
http://reviews.llvm.org/D13637
llvm-svn: 250176
What was done:
1) .got.plt section is created for functions that requires PLT. .got.plt has 3 predefined empty entries now that are required for dynamic linker.
Also other new items created are configured to have correct jump to PLT[N].
2) PLT section now has PLT[0] entry, also others ones are configured to support PLT->GOT(.got.plt) calls.
3) Implemented .rel[a].plt sections (based on patch http://reviews.llvm.org/D13569).
4) Fixed plt relocations types (based on patch http://reviews.llvm.org/D13589).
NOTES:
The .plt.got zero entry is still empty now. According to ELF specification it should hold the address of the dynamic structure, referenced with the symbol
_DYNAMIC. The _DYNAMIC entry points to the .dynamic section which contains information used by the ELF interpreter to setup the binary.
Differential Revision: http://reviews.llvm.org/D13651
llvm-svn: 250169
Under PPC64 ELF v1 ABI, the symbols associated with each function name don't
point directly to the code in the .text section (or similar), but rather to a
function descriptor structure in a special data section named .opd. The
elements in the .opd structure include a pointer to the actual code, and a the
relevant TOC base value. Both of these are themselves set by relocations.
When we have a local call, we need the relevant relocation to refer directly to
the target code, not to the function-descriptor in the .opd section. Only when
we have a .plt stub do we care about the address of the .opd function
descriptor itself.
So we make a few changes here:
1. Always write .opd first, so that its relocated data values are available
for later use when writing the text sections. Record a pointer to the .opd
structure, and its corresponding buffer.
2. When processing a relative branch relocation under ppc64, if the
destination points into the .opd section, read the code pointer out of the
function descriptor structure and use that instead.
This this, I can link, and run, a dynamically-compiled "hello world"
application on big-Endian PPC64/Linux (ELF v1 ABI) using lld.
llvm-svn: 250122
Under the PPC64 ELF ABI, functions that might call into other modules (and,
thus, need to load a different TOC base value into %r2), need to restore the
old value after the call. The old value is saved by the .plt code, and the
caller only needs to include a nop instruction after the call, which the linker
will transform into a TOC restore if necessary.
In order to do this the relocation handler needs two things:
1. It needs to know whether the call instruction it is modifying is targeting
a .plt stub that will load a new TOC base value (necessitating a restore after
the call).
2. It needs to know where the buffer ends, so that it does not accidentally
run off the end of the buffer when looking for the 'nop' instruction after the
call.
Given these two pieces of information, we can insert the restore instruction in
place of the following nop when necessary.
llvm-svn: 250110
This is mostly an adaptation of the code in LLVM's
lib/ExecutionEngine/RuntimeDyld/RuntimeDyldELF.cpp, and handles a sufficient
number of relocations to link a 'hello world' program on big-Endian PPC64/Linux
(ELF v1 ABI).
llvm-svn: 250101
PPC64 has several special sections that are intended to be accessed from the
TOC base pointer. When a .got is present, the TOC base pointer is .got + 0x8000
(as specified by the ABI). Furthermore, the glibc startup code contains an
assumption that a 16-bit relocation can hold the offset from the TOC base value
to the beginning of the .toc section. Thus, we need to make sure that .toc
appears after .got. This much, at least, is required in practice. The other
PPC64 special sections (.toc, .toc1, .opd, etc.) should also be close by to
optimize access by smaller TOC-base-pointer offsets.
llvm-svn: 250100
In order to actually verify the condition, we have to use a weak symbol.
If an undefined symbol is not used at all, it is naturally ignored not by
the code for --as-needed but by the code for something else.
llvm-svn: 250062
This patch adds AsNeeded and IsUsed bool fields to SharedFile. AsNeeded bit
is set if the DSO is enclosed with --as-needed and --no-as-needed. IsUsed
bit is off by default. When we adds a symbol to the symbol table for dynamic
linking, we set its SharedFile's IsUsed bit.
If AsNeeded is set but IsUsed is not set, we don't want to write that
file's SO name to DT_NEEDED field.
http://reviews.llvm.org/D13579
llvm-svn: 249998
In the linker script, -l and = have the same meaning as in the command line.
In addition to that, if a path is not absolute, the path needs to be searched
from the search paths. This patch implements them.
llvm-svn: 249967
Previously, we reserved the first page for the program header, so no
sections would be written to very beginning of the output file.
FreeBSD requires .interp section be exist on the first page, so that
was not good.
This patch calculates the size of the program header and then assign
addresses to the sections. Now the first section is located next to
the program header. Because the first section is .interp, it's very
likely to be on the first page.
llvm-svn: 249957
SymbolTable was not a template class. Instead we had switch-case-based
type dispatch to call desired functions. We had to do that because
SymbolTable was created before we know what ELF type objects had been
passed.
Every time I tried to add a new function to the symbol table, I had to
define a dispatcher which consist of a single switch statement.
It also brought an restriction what the driver can do. For example,
we cannot add undefined symbols before any files are added to the symbol
table. That's because no symbols can be added until the symbol table
knows the ELF type, but when it knows about that, it's too late.
In this patch, the driver makes a decision on what ELF type objects
are being handled. Then the driver creates a SymbolTable object for
an appropriate ELF type.
http://reviews.llvm.org/D13544
llvm-svn: 249902
This reverts commit r249816.
It broke building llvm with lld:
$ ./bin/FileCheck
./bin/FileCheck: error while loading shared libraries: unexpected PLT reloc type 0x06
I think the only thing that is wrong with this patch is that it is too soon.
The plt we create (and its relocs) don't support lazy loading, so they have
to be relocated as ordinary dynamic relocations.
llvm-svn: 249835
.rela.plt contains list of elements in the PLT, which are liable to the relocation during the dynamic linking.
Differential Revision: http://reviews.llvm.org/D13569
llvm-svn: 249816
The required page alignment is different on different targets. On PowerPC, for
example, we need 64K pages (the loader won't set different permissions on a
finer granularity than that). I've set the existing targets to what I believe
to be the correct values, and have updated the regression tests accordingly.
llvm-svn: 249760
Reapply r249726 (and r249723), hopefully with the correct test fixups this time.
Original commit message:
Address a FIXME in ELF/Writer.cpp: Make VAStart a target-dependent property.
I've set the values for the existing targets to what I believe to be the
correct values, and updated the regression tests accordingly.
llvm-svn: 249752
Address a FIXME in ELF/Writer.cpp: Make VAStart a target-dependent property.
I've set the values for the existing targets to what I believe to be the
correct values, and updated the regression tests accordingly.
llvm-svn: 249723
`not` command on Windows is not able to find an executable from PATH
if a given command already has an extension even if the extension is
not ".exe".
llvm-svn: 249630
When generating an executable or shared library, mark it to tell the dynamic linker to resolve all symbols when the program is started, or when the shared library is linked to using dlopen, instead of deferring function call resolution to the point when the function is first called.
Differential Revision: http://reviews.llvm.org/D13468
llvm-svn: 249551
Parse and apply emulation given with -m option.
Check input files to match ELF type and machine architecture provided with -m.
Differential Revision: http://reviews.llvm.org/D13055
llvm-svn: 249529
I am about to change lld to avoid creating unnecessary got entries for locally
defined symbols when creating executables.
Update tests that were depending on the current behavior.
llvm-svn: 249474
We were still fetching them when the archive was seen first.
We should experiment with just letting lazy symbols get to compare, it
might be cleaner for ELF.
llvm-svn: 249417
This is a case that requires --start-group --end-group with regular ELF
linkers. Fortunately it is still possible to handle it with lazy symbols without
taking a second look at archives.
Thanks to Michael Spencer for the bug report.
llvm-svn: 249406
The entries are added if there are "_init" or "_fini" entries in
the symbol table respectively. According to the behavior of ld,
entries are inserted even for undefined symbols.
Symbol names can be overridden by using -init and -fini command
line switches. If used, these switches neither add new symbol table
entries nor require those symbols to be resolved.
Differential Revision: http://reviews.llvm.org/D13385
llvm-svn: 249297
Add symbol specified with -u as undefined which may cause additional
object files from archives to be linked into the resulting binary.
Differential Revision: http://reviews.llvm.org/D13345
llvm-svn: 249295
Using the "raw" Elf64_Dyn or Elf32_Dyn structures in
DynamicSection<ELFT>::writeTo does not correctly handle mixed-Endian
situations. Instead, use the corresponding llvm::object::* structures which
have Endian-converting members (like the rest of the code).
This fixes all currently-failing elf2 tests when running on big-Endian
PPC64/Linux (I've added a big-Endian test case which should fail on
little-Endian machines in the same way that test/elf2/shared.s failed on
big-Endian machines prior to this change).
llvm-svn: 249150
Sort by:
ALLOC
ALLOC && NOBITS
ALLOC & EXEC
ALLOC & EXEC && NOBITS
ALLOC & WRITE
ALLOC & WRITE && NOBITS
<nothing> (ignoring NOBITS)
The dynamic section is finalized early because it adds strings to the dynamic string table, which comes before the dynamic table.
llvm-svn: 249071
Summary:
If --whole-archive is used, all symbols from the following archives are added to the output. --no-whole-archive restores default behavior. These switches can be used multiple times.
NB. We have to keep an ArchiveFile instance within SymbolTable even if --whole-archive mode is active since it can be a thin archive which contains just names of external files. In that case actual memory buffers for the archive members will be stored within the File member of ArchiveFile class.
Reviewers: rafael, ruiu
Subscribers: grimar, llvm-commits
Projects: #lld
Differential Revision: http://reviews.llvm.org/D13286
llvm-svn: 249045
Summary:
These switches affect library searching for '-l' which follow them. Synonym forms are also supported:
* -dy and -call_shared for -Bdynamic switch
* -dn, -non_shared and -static for -Bstatic switch
Reviewers: rafael, ruiu
Subscribers: emaste, llvm-commits
Projects: #lld
Differential Revision: http://reviews.llvm.org/D13238
llvm-svn: 249029
If a shared library has a DT_SONAME entry, that is what should be included
in the DT_NEEDED of a program using it.
We don't implement -soname yet, so check in a .so for now.
llvm-svn: 249025
This linker script parser and evaluator is powerful enough to read
Linux's libc.so, which is (despite its name) a linker script that
contains OUTPUT_FORMAT, GROUP and AS_NEEDED directives.
The parser implemented in this patch is a recursive-descendent one.
It does *not* construct an AST but consumes directives in place and
sets the results to Symtab object, like what Driver is doing.
This should be very fast since less objects are allocated, and
this is also more readable.
http://reviews.llvm.org/D13232
llvm-svn: 248918
Sort by:
ALLOC
ALLOC && NOBITS
ALLOC & EXEC
ALLOC & EXEC && NOBITS
ALLOC & WRITE
ALLOC & WRITE && NOBITS
<nothing> (ignoring NOBITS)
The dynamic section is finalized early because it adds strings to the dynamic string table, which comes before the dynamic table.
llvm-svn: 248845
The code in driver is about to change so that the invalid files would no
longer be seen as ELF.
This makes sure that the error path will remain tested.
llvm-svn: 248820
Besides a trivial MIPS support the patch introduces new TargetInfo class
member getDefaultEntry() to override default name of the entry symbol.
MIPS uses __start for that.
Differential Revision: http://reviews.llvm.org/D13227
llvm-svn: 248779
This is a basic initial implementation of the -flat_namespace and
-undefined options for LLD-darwin. It ignores several subtlties,
but the result is close enough that we can now link LLVM (but not
clang) on Darwin and pass all regression tests.
llvm-svn: 248732
There's actually a room to improve this patch. Instead of not merging
sections that have different alignements, we can choose the section that
has the largest alignment requirement among all sections that are otherwise
considered the same. Then all section alignments are satisfied, so we can
merge them.
I don't know if that improvement could make any difference for real-world
input, so I'll leave it alone. Would be interesting to revisit later.
llvm-svn: 248581
Since FreeBSD 4.1, the kernel expects binaries to be marked with
ELFOSABI_FREEBSD in the ELF header to exec() them. LLD unconditionally
sets OSABI to ELF_OSABINONE, and everything linked with it won't run
on FreeBSD (unless explicitly rebranded).
Example:
% ./aarch64-hello
ELF binary type "0" not known.
zsh: exec format error: ./aarch64-hello
FreeBSD could be modified to accept ELF_OSABINONE, but that would break all
existing binaries, so the kernel needs to support both ABINONE and ABIFREEBSD.
I plan to push this change in FreeBSD one day, which, unfortunately, is
not today. This code patches lld so it sets the header field correctly.
For completeness, the rationale of this change is explained in the FreeBSD
commit message, and it's apparently to pleasee binutils maintainers at the time.
https://svnweb.freebsd.org/base?view=revision&revision=59342
Differential Revision: http://reviews.llvm.org/D13140
llvm-svn: 248554
This is just enough to get PLT working on 32 bit x86.
The idea behind using a virtual interface is that it should be easy to
convert any of the functions to template parameters if any turns out to be
performance critical.
llvm-svn: 248308
This is an LLD extension to MSVC link.exe command line. MSVC linker
does not write symbol tables for executables. We do unless no /debug
option is given.
There's a situation that we want to enable debug info but don't want
to emit the symbol table. One example is when we are comparing output
file size. With this patch, you can tell the linker to not create
a symbol table by just specifying /nosymtab.
llvm-svn: 248225
This patch fixes a regression introduced by r247964. Relocations that
are referring the same symbol should be considered equal, but they
were not if they were pointing to non-section chunks.
llvm-svn: 248132
The offset of the .rela.dyn section isn't the same between hosts because a path comes before it. This test doesn't care what the offset is.
llvm-svn: 247946
We used to sort the symbols at the very end, but we need to know the order
earlier so that we can create reference to them in the dynamic relocations.
Thanks to Igor Kudrin for pointing out the problem.
llvm-svn: 247911