I have two immediate motivations for adding this:
1) It makes writing expectations in tests *dramatically* easier. A
quick example that is a taste of what is possible:
std::vector<int> v = ...;
EXPECT_THAT(v, UnorderedElementsAre(1, 2, 3));
This checks that v contains '1', '2', and '3' in some order. There
are a wealth of other helpful matchers like this. They tend to be
highly generic and STL-friendly so they will in almost all cases work
out of the box even on custom LLVM data structures.
I actually find the matcher syntax substantially easier to read even
for simple assertions:
EXPECT_THAT(a, Eq(b));
EXPECT_THAT(b, Ne(c));
Both of these make it clear what is being *tested* and what is being
*expected*. With `EXPECT_EQ` this is implicit (the LHS is expected,
the RHS is tested) and often confusing. With `EXPECT_NE` it is just
not clear. Even the failure error messages are superior with the
matcher based expectations.
2) When testing any kind of generic code, you are continually defining
dummy types with interfaces and then trying to check that the
interfaces are manipulated in a particular way. This is actually what
mocks are *good* for -- testing *interface interactions*. With
generic code, there is often no "fake" or other object that can be
used.
For a concrete example of where this is currently causing significant
pain, look at the pass manager unittests which are riddled with
counters incremented when methods are called. All of these could be
replaced with mocks. The result would be more effective at testing
the code by having tighter constraints. It would be substantially
more readable and maintainable when updating the code. And the error
messages on failure would have substantially more information as
mocks automatically record stack traces and other information *when
the API is misused* instead of trying to diagnose it after the fact.
I expect that #1 will be the overwhelming majority of the uses of gmock,
but I think that is sufficient to justify having it. I would actually
like to update the coding standards to encourage the use of matchers
rather than any other form of `EXPECT_...` macros as they are IMO
a strict superset in terms of functionality and readability.
I think that #2 is relatively rarely useful, but there *are* cases where
it is useful. Historically, I think misuse of actual mocking as
described in #2 has led to resistance towards this framework. I am
actually sympathetic to this -- mocking can easily be overused. However
I think this is not a significant concern in LLVM. First and foremost,
LLVM has very careful and rare exposure of abstract interfaces or
dependency injection, which are the most prone to abuse with mocks. So
there are few opportunities to abuse them. Second, a large fraction of
LLVM's unittests are testing *generic code* where mocks actually make
tremendous sense. And gmock is well suited to building interfaces that
exercise generic libraries. Finally, I still think we should be willing
to have testing utilities in tree even if they should be used rarely. We
can use code review to help guide the usage here.
For a longer and more complete discussion of this, see the llvm-dev
thread here:
http://lists.llvm.org/pipermail/llvm-dev/2017-January/108672.html
The general consensus seems that this is a reasonable direction to start
down, but that doesn't mean we should race ahead and use this
everywhere. I have one test that is blocked on this to land and that was
specifically used as an example. Before widespread adoption, I'm going
to work up some (brief) guidelines as some of these facilities should be
used sparingly and carefully.
Differential Revision: https://reviews.llvm.org/D28156
llvm-svn: 291606
Some GCC versions will accept any warning flag name after a '-Wno-',
which would cause us to try to disable warnings with names GCC didn't
understand. This will silently succeed unless there is some other output
from GCC in which case we get weird cc1plus warnings about the warning
name being bogus.
There is still the issue that gtest sets warning flags for building
gtest-all.cc using weird 'add_definitions' and the fact that there is
a GCC version which warns on the variadic macro usage in gtest under
-pedantic, but has no flag analogous to Clang's
-Wgnu-zero-variadic-macro-argumnets to suppress this warning. I haven't
been able to come up with any good solution here. The closest is to turn
off -pedantic for those versions of GCC, but that seems really nasty.
For now, those versinos of GCC aren't warning clean. If anyone is broken
by this, I'll work on CMake logic to detect and disable -pedantic in
these cases.
llvm-svn: 291299
Canonicalize all CMake booleans to 0/1 before passing them to lit, to
ensure that the Python side handles all of them consistently
and correctly. 0/1 is a safe choice of values that trigger the same
boolean interpretation in CMake, Python and C++.
Furthermore, using them without quotes improves the chance Python will
explicitly fail when an incorrect value (such as ON/OFF, TRUE/FALSE,
YES/NO) is accidentally passed, rather than silently misinterpreting
the value.
This replaces a lot of different logics spread around lit site files,
attempting to partially reproduce the boolean logic used in CMake
and usually silently failing when an uncommon value was used instead.
In fact, some of them were never working correctly since different
values were assigned in CMake and checked in Python.
The alternative solution could be to create a common parser for CMake
booleans in lit and use it consistently throughout the site files.
However, it does not seem like the best idea to create redundant
implementation of the same logic and have to follow upstream if it ever
is extended to handle more values.
Differential Revision: https://reviews.llvm.org/D28294
llvm-svn: 291284
I somehow wrote this fix and then lost it prior to commit. Really sorry
about the noise. This should fix some issues with hacking add_definition
to do things with warning flags.
llvm-svn: 291033
If OUTPUT_DIR is not specified we can assume the symlink is linking to a file in the same directory, so we can use $<TARGET_FILE_NAME:${target}> to create a relative symlink.
In the case of LLDB, when we build a framework, we are creating symlinks in a different directory than the file we're pointing to, and we don't install those links. To make this work in the build directory we can use $<TARGET_FILE:${target}> instead, which uses the full path to the target.
llvm-svn: 289840
This fix, while a bit complicated, preserves the reusability while fixing the issues reported on llvm-commits with visual studio generators.
llvm-svn: 288679
The old implementation of add_llvm_tool_symlink could fail in odd ways when building out of tree. This version solves that problem by not using the LLVM_* variables, and instead reaeding the target's properties.
llvm-svn: 288632
Add an optional parameter to `llvm_install_symlink` which allows the symlink
installation to be placed into a specific component rather than the default
value.
llvm-svn: 288600
This fixes a regression introduced by r285714: we weren't setting the
rpath on LLVMgold.so correctly.
Spotted by mark@chromium.org!
Differential Revision: https://reviews.llvm.org/D27176
llvm-svn: 288076
When LLVM_DEPENDENCY_DEBUGGING=On we should apply the sandbox only on the target, not the directory. This is important for directories that create more than one target, or for nested directories.
llvm-svn: 287415
This patch adds an option to the build system LLVM_DEPENDENCY_DEBUGGING. Over time I plan to extend this to do more complex verifications, but the initial patch causes compile errors wherever there is missing a dependency on intrinsics_gen.
Because intrinsics_gen is a compile-time dependency not a link-time dependency, everything that relies on the headers generated in intrinsics_gen needs an explicit dependency.
llvm-svn: 287207
When using LLVM_DISTRIBUTION_COMPONENTS, it's possible for LLVM's
export list to be empty. If this happens the install(EXPORTS) command
will fail, but since there isn't anything to install anyway we really
just want to skip it.
llvm-svn: 286209
Summary:
Set _install_rpath to CMAKE_INSTALL_RPATH if it is defined, so that eventually
INSTALL_RPATH is set to CMAKE_INSTALL_RPATH.
The "if(NOT DEFINED CMAKE_INSTALL_RPATH)" was missing a corresponding else
clause.
This also cleans up the fix made in r285908.
Patch by Azharuddin Mohammed
Reviewers: john.brawn, sgundapa, beanz
Subscribers: chapuni, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D26289
llvm-svn: 286184
This Makes sure we only export targets that we're distributing, since
cmake will fail to import the file otherwise due to missing targets.
llvm-svn: 286024
r285714 made it so that when CMAKE_INSTALL_RPATH is set _install_rpath is not
set, but that means INSTALL_RPATH gets set to an empty string which isn't what
we want. Fix this by setting INSTALL_RPATH only when _install_rpath is set.
llvm-svn: 285908
This patch was produced in conjunction with Michał Górny. It should resolve the issues that were trying to be solved by D25304.
This moves rpath handling into `llvm_add_library` and `add_llvm_executable` so that it is available to all projects using AddLLVM whether built in-tree or out-of-tree.
llvm-svn: 285714
Make LIT_COMMAND configurable, use source tree only when actually
available and extend the default search to other common executable names
'lit.py' and 'lit', in order to increase uniformity between all LLVM
projects and support using installed lit.
Changing the conditional used to determine whether in-tree or external
lit is being used covers the case when LLVM_MAIN_SRC_DIR is defined but
does not exist (anymore). In this case, the functions falls back to
looking for installed lit rather than attempting to use a non-existing
path. The same conditional is used in clang already.
Making LIT_COMMAND a cache variable in case the source tree variant is
used serves two purposes. Firstly, it increases uniformity between
the two branches since find_program() implicitly makes LIT_COMMAND
a cache variable. Secondly, it allows overriding the lit executable used
to run the tests when the LLVM source tree is provided. Gentoo is
planning to use this to use installed (and byte-compiled) lit instead of
re-compiling it in every LLVM project.
Extending default search is meant to increase uniformity between
different LLVM projects. The 'lit.py' name is already used by a few of
them, and 'lit' is the name used by utils/lit/setup.py when installing.
Differential Revision: https://reviews.llvm.org/D25076
llvm-svn: 283247
Reintroduce versioning of shared libraries via SOVERSION, addressing
the issues with the previous design, since Gentoo is relying
on shared-split install of LLVM. The SOVERSIONs were originally
introduced in r229720 for all libraries, and removed in r252093 in favor
of custom SONAME. As far as I understand, the major concern with the old
versioning was that the used versions were incompatible with ldconfig.
Having considered that, this commit introduce SOVERSIONS with the
following considerations:
1. SOVERSIONs are formed of major & minor version concatenated -- i.e.
for 4.0 its .so.40. This matches the common practice where the first
version number indicates ABI breakage, and therefore fixes the issues
with ldconfig. Additionally, VERSION with the remaining verion
components appended is used, however this is not strictly necessary.
2. The versioning is only applied to libraries with no explicit SONAME
specified -- i.e. it won't apply to libLLVM but only to the split
libraries. It will also apply to libraries installed by the subprojects.
3. The versioning is only done on *nix systems, Darwin excluded. This
matches the current use of SONAME.
Differential Revision: https://reviews.llvm.org/D24757
llvm-svn: 283189
Revert the change in r283029 (and the fixup in r283033) due to buildbot
breakage. The fixup is ineffective for the bots that do not force clean
build since the wrong value is already cached in CMakeCache.txt.
Reverting it should result in the cache variable being removed
and therefore it should be possible to re-introduce it after all
buildbots build this revision.
llvm-svn: 283036
Make LIT_COMMAND configurable, use source tree only when actually
available and extend the default search to other common executable names
'lit.py' and 'lit', in order to increase uniformity between all LLVM
projects and support using installed lit.
Changing the conditional used to determine whether in-tree or external
lit is being used covers the case when LLVM_MAIN_SRC_DIR is defined but
does not exist (anymore). In this case, the functions falls back to
looking for installed lit rather than attempting to use a non-existing
path. The same conditional is used in clang already.
Making LIT_COMMAND a cache variable in case the source tree variant is
used serves two purposes. Firstly, it increases uniformity between
the two branches since find_program() implicitly makes LIT_COMMAND
a cache variable. Secondly, it allows overriding the lit executable used
to run the tests when the LLVM source tree is provided. Gentoo is
planning to use this to use installed (and byte-compiled) lit instead of
re-compiling it in every LLVM project.
Extending default search is meant to increase uniformity between
different LLVM projects. The 'lit.py' name is already used by a few of
them, and 'lit' is the name used by utils/lit/setup.py when installing.
Differential Revision: https://reviews.llvm.org/D25076
llvm-svn: 283029
When LLVM_INSTALL_TOOLCHAIN_ONLY is used and LLVM_TOOLCHAIN_TOOLS
contains a tool which is a symlink, it would be ignored. This already
worked before but got broken in r282510.
Differential Revision: https://reviews.llvm.org/D25067
llvm-svn: 282844
This supports creating symlinks to tools in different directories than
the tool is built to. This is useful for the LLDB framework build which
I’m sending patches for shortly.
llvm-svn: 281788
Summary:
When LLVM_LINK_LLVM_DYLIB is set, the libLLVM shared
library needs to be installed in the toolchain. Without
this chanage LLVM_INSTALL_TOOLCHAIN_ONLY combined with
LLVM_LINK_LLVM_DYLIB results in a broken install.
Patch by Sam Clegg
Differential Revision: https://reviews.llvm.org/D24676
llvm-svn: 281763
Previously, gtest/gtest_main were not exported via cmake. The intention here was
to ensure that users whom are linking against the LLVM install tree would not
get the gtest/gtest_main targets. This prevents downstream projects that link
against the LLVM build tree (i.e. Swift) from getting this dependency
information in their cmake builds. Without such dependency information, linker
issues can result on linux due to LLVMSupport being put before gtest on the
linker command line.
This commit preserves behavior that we want for the install tree, while adding
support for the build tree by:
1. The special casing for gtest/gtest_main in the add_llvm_library code is
removed in favor of a flag called "BUILDTREE_ONLY". If this is set, then the
library is communicating that it is only meant to be exported into the build
tree and is not meant to be installed or exported via the install tree. This
part is just a tweak to remove the special case, the underlying code is the
same.
2. The cmake code that exports cmake targets for the build tree has special code
to import an additional targets file called
LLVMBuildTreeOnlyExports.cmake. Additionally the extra targets are added to the
LLVMConfig.cmake's LLVM_EXPORTED_TARGETS variable. In contrast, the
"installation" cmake file uses the normal LLVM_EXPORTS_TARGETS as before and
does not include the extra exports file. This is implemented by
defining/undefining variables when performing a configure of the build/install
tree LLVMConfig.cmake files.
llvm-svn: 281085
Summary:
To build llgo, you must currently ensure that llgo
is in the tools/llgo directory, due to a hard-coded
path in llvm-go.
To support the use of LLVM_EXTERNAL_LLGO_SOURCE_DIR,
we introduce a flag to llvm-go that enables the
caller to specify the paths to symlink in the
temporary $GOPATH.
Reviewers: pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D21634
llvm-svn: 276829
With in-tree builds we can get Output directories scattered among our
tests. Recursing into those to find tests doesn't make sense.
Thanks to nlewycky for noticing this!
llvm-svn: 276667
This option is the equivalent option to LLVM_BUILD_TOOLS but for executables
created via add_llvm_utility.
This is a useful tool for improving compile time in situations where LLVM is
used as a library and no testing tools are needed.
It follows the exact same implemention model as LLVM_BUILD_TOOLS.
Since the option is by default set to on, no behavior is changed unless one sets
it from the command line to be false.
llvm-svn: 275007
export_executable_symbols looks though the link libraries of the executable in
order to figure out transitive dependencies, but in doing so it assumes that
all link libraries are also targets. This is not true as of r273302, so adjust
it to check if they actually are targets.
llvm-svn: 274546
Otherwise it gets linked in by one of the dependencies of shared
libraries which may be too late and we end up with weird crashes in
std::call_once().
Differential Revision: http://reviews.llvm.org/D21478
llvm-svn: 273302
This patch adds a new option LLVM_TOOLS_INSTALL_DIR which allows customizing the location executables and symlinks get installed to. This adds the functionality provided by autoconf's --bindir flag.
This patch is based on patches from and collaboration with Tony Kelman, and replaces http://reviews.llvm.org/D20934.
llvm-svn: 272200
Summary:
This allows customizing the location executables and symlinks get installed to,
as with --bindir in autotools.
Reviewers: loladiro, beanz
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D20934
llvm-svn: 272031
The problem with plugins on Windows is that when building a plugin DLL it needs
to explicitly link against something (an exe or DLL) if it uses symbols from
that thing, and that thing must explicitly export those symbols. Also there's a
limit of 65535 symbols that can be exported. This means that currently plugins
only work on Windows when using BUILD_SHARED_LIBS, and that doesn't work with
MSVC.
This patch adds an LLVM_EXPORT_SYMBOLS_FOR_PLUGINS option, which when enabled
automatically exports from all LLVM tools the symbols that a plugin could want
to use so that a plugin can link against a tool directly. Plugins can specify
what tool they link against by using PLUGIN_TOOL argument to llvm_add_library.
The option can also be enabled on Linux, though there all it should do is
restrict the set of symbols that are exported as by default all symbols are
exported.
This option is currently OFF by default, as while I've verified that it works
with MSVC, linux gcc, and cygwin gcc, I haven't tried mingw gcc and I have no
idea what will happen on OSX. Also unfortunately we can't turn on
LLVM_ENABLE_PLUGINS when the option is ON as bugpoint-passes needs to be
loaded by both bugpoint.exe and opt.exe which is incompatible with this
approach. Also currently clang plugins don't work with this approach, which
will be fixed in future patches.
Differential Revision: http://reviews.llvm.org/D18826
llvm-svn: 270839
This should actually address PR27855. This results in adding references to the system libs inside generated dylibs so that they get correctly pulled in when linking against the dylib.
llvm-svn: 270723
Currently our cmake generates targets like check-llvm-unit and
check-llvm-transforms-loopunroll-x86, but not check-llvm-transforms or
check-llvm-transforms-adce. This is because the search for test suites
only lists the ones with a custom lit.cfg or lit.local.cfg.
Instead, we can do something a little smarter - any directory under
test that isn't called Inputs or inside a directory called Inputs is a
test suite.
llvm-svn: 268806
At the moment almost every lit.site.cfg.in contains two lines comment:
## Autogenerated by LLVM/Clang configuration.
# Do not edit!
The patch adds variable LIT_SITE_CFG_IN_HEADER, that is replaced from
configure_lit_site_cfg with the note and some useful information.
llvm-svn: 266515
For debugging it is useful to be able to generate dSYM files but not strip the executables. This change adds the ability to skip stripping by setting LLVM_EXTERNALIZE_DEBUGINFO_SKIP_STRIP=On.
llvm-svn: 265041
Patch by Jack Howarth.
When linking to libLLVM, don't also link to the component
libraries that constitute libLLVM.
Differential Revision: http://reviews.llvm.org/D16945
llvm-svn: 260641
When we build LLVM with externalized debug info, all debugging and
symbolication related data is extracted into dSYM files prior to
stripping. As such, there is no need to preserve local symbols in LLVM
binaries after dSYM creation.
This shrinks libLLVM.dylib from 58MB to 55MB on my system.
llvm-svn: 258566
Summary:
This is a re-commit of r257003, which was reverted,
along with the fixes from http://reviews.llvm.org/D15986.
r252532 added support for reporting the monolithic library
when LLVM_BUILD_LLVM_DYLIB is used. This would only be done
if the individual components were not found, and the dynamic
library is found.
This diff extends this as follows:
- If LLVM_LINK_LLVM_DYLIB is set, then prefer the shared
library, even if all component libraries exist.
- Two flags, --link-shared and --link-static are introduced
to provide explicit guidance. If --link-shared is passed
and the shared library does not exist, an error results.
Additionally, changed the expected shared library names from
(e.g.) LLVM-3.8.0 to LLVM-3.8. The former exists only in an
installation (and then only in CMake builds I think?), and not
in the build tree; this breaks usage of llvm-config during
builds, e.g. by llvm-go.
Reviewers: DiamondLovesYou, beanz
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15986
llvm-svn: 258283
With this, one can build a lib from the objects of other libs:
set(SOURCES
$<TARGET_OBJECTS:obj.clingInterpreter>
$<TARGET_OBJECTS:obj.clingMetaProcessor>
$<TARGET_OBJECTS:obj.clingUtils>
)
Reviewed by Chris Bieneman - thanks!
llvm-svn: 257459
Summary:
r252532 added support for reporting the monolithic library
when LLVM_BUILD_LLVM_DYLIB is used. This would only be done
if the individual components were not found, and the dynamic
library is found.
This diff extends this as follows:
- If LLVM_LINK_LLVM_DYLIB is set, then prefer the shared
library, even if all component libraries exist.
- Two flags, --link-shared and --link-static are introduced
to provide explicit guidance. If --link-shared is passed
and the shared library does not exist, an error results.
Additionally, changed the expected shared library names from
(e.g.) LLVM-3.8.0 to LLVM-3.8. The former exists only in an
installation (and then only in CMake builds I think?), and not
in the build tree; this breaks usage of llvm-config during
builds, e.g. by llvm-go.
Reviewers: DiamondLovesYou, beanz
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15033
llvm-svn: 257003
One of the earlier patches updated the cmake rule to install the
runtime dlls in INSTALL_DIR/lib which is not correct. This patch
updates the rule to install CMake's RUNTIME in bin directory
Differential Revision: http://reviews.llvm.org/D15505
llvm-svn: 255781
If you externalize debug info for unit tests the test runner finds the mach-o inside the dsym bundle and tries to execute it as a test.
llvm-svn: 255056
Summary: This adds support for generating dSYM files and stripping debug info from executables and dylibs. It also supports passing -object_path_lto to the linker to generate dSYMs for LTO builds.
Reviewers: bogner, friss
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D15133
llvm-svn: 254627
Summary:
Move handling of the SONAME option from add_llvm_library
to llvm_add_library, so that it can be used in sub-projects.
In particular, this makes it possible to have consistently
named shared libraries for LLVM, Clang and LLDB.
Also, base the SONAME and symlinks on the output name
by extracting the OUTPUT_NAME property, rather than assuming
it is the same as the target name.
Reviewers: beanz
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D14539
llvm-svn: 252669
When configuring various llvm projects that use AddLLVM.cmake, this warning is
emitted many times, flooding the screen:
Policy CMP0007 is not set: list command no longer ignores empty elements.
The fix is removing an extra semicolon.
Differential Revision: http://reviews.llvm.org/D14339
llvm-svn: 252628
Summary:
This change makes the CMake build system generate libraries for Linux and Darwin matching the makefile build system.
Linux libraries follow the pattern lib${name}.${MAJOR}.${MINOR}.so so that ldconfig won't pick it up incorrectly.
Darwin libraries are not versioned.
Note: On linux the non-versioned symlink is generated at install-time not build time. I plan to fix that eventually, but I expect that is good enough for the purposes of fixing this bug.
Reviewers: loladiro, tstellarAMD
Subscribers: axw, llvm-commits
Differential Revision: http://reviews.llvm.org/D13841
llvm-svn: 252093
Summary:
This prints NO if LLVM was built with -fno-rtti or an equivalent flag
and YES otherwise. The reasons to add -has-rtti rather than adding -fno-rtti
to --cxxflags are:
1. Building LLVM with -fno-rtti does not always mean that client
applications need this flag.
2. Some compilers have a different flag for disabling rtti, and the
compiler being used to build LLVM may not be the compiler being used to
build the application.
Reviewers: echristo, chandlerc, beanz
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11849
llvm-svn: 252075
r250835 unintentionally discarded the optional parameter to the
add_llvm_external_project() macro that may point to a path when the said
path is different from ${name}. This should fix it by passing ${ARGN} on
to add_llvm_subdirectory(). The problem manifests itself with e.g.
add_llvm_external_project(clang-tools-extra extra) from
clang/tools/CMakeLists.txt
Patch by Luchesar V. Iliev.
llvm-svn: 251001
Summary:
This refactoring makes some of the code used to control including subdirectories parameterized so it can be re-used elsewhere.
Specifically I want to re-use this code in clang to be able to turn off specific tool subdirectories.
Reviewers: chapuni, filcab, bogner, Bigcheese
Subscribers: emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D13783
llvm-svn: 250835
In order to resolve PR25059, we're going to need to be able to generate symlinks to libraries manually, so I need this code to be reusable.
llvm-svn: 250573
When building a plugin against an installed LLVM toolchain using
add_llvm_loadable_module (in the documented manner) doesn't work as nothing sets
the *_OUTPUT_INTDIR variables causing an error when set_output_directory is
called. Making those arguments optional (causing the default output directory
to be used) fixes this.
Differential Revision: http://reviews.llvm.org/D13215
llvm-svn: 248911
Currently LLVM_COMPILER_IS_GCC_COMPATIBLE is set as a side-effect of determining
the stdlib to use in HandleLLVMStdlib, which causes problems when attempting to
use AddLLVM from an installed LLVM toolchain, as HandleLLVMStdlib is not used.
Move the setting of this variable into DetermineGCCCompatible and include that
from both AddLLVM and HandleLLVMStdlib.
Differential Revision: http://reviews.llvm.org/D13216
llvm-svn: 248798
In order to support building clang out-of-tree the install_symlink script needs to be installed, and it needs to be found by searching the CMAKE_MODULE_PATH.
This change renames install_symlink -> LLVMInstallSymlink so it doesn't conflict with naming from other projects, and adds searching behavior in AddLLVM.cmake
llvm-svn: 248009
Summary: This change generalizes symlink generation and makes symlinks to tools obey LLVM_TOOLCHAIN_TOOLS. It makes it so that if you exclude llvm-ar from LLVM_TOOLCHAIN_TOOLS you don't end up with broken symlinks to llvm-lib and llvm-ranlib in your install.
Reviewers: bogner, chapuni, rafael
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12864
llvm-svn: 247632
Fix-up for r247305 to use the right variable. There's another use of
LLVM_SOURCE_DIR in this file that is probably also questionable, but it's
for Windows so I'm going to leave it alone.
llvm-svn: 247311
This amends chapuni's r246156 to handle an Xcode quirk, one even called out
in the CMake documentation:
Some native build systems may not like targets that have only object files,
so consider adding at least one real source file to any target that
references $<TARGET_OBJECTS:objlib>.
I've limited the scope of this hack to Xcode for now.
llvm-svn: 247305
Summary:
This diff attempts to address the concerns raised in
http://reviews.llvm.org/D12488.
We introduce a new USE_SHARED option to llvm_config,
which, if set, causes the target to be linked against
libLLVM.
add_llvm_utility now uniformly disables linking against
libLLVM. These utilities are not intended for distribution,
and this keeps the option handling more centralised.
llvm-shlib is now processes before any other "tools"
subdirectories, ensuring the libLLVM target is defined
before its dependents.
One main difference from what was requested: llvm_config
does not prune LLVM_DYLIB_COMPONENTS from the components
passed into explicit_llvm_config. This is because the "all"
component does something special, adding additional
libraries (namely libLTO). Adding the component libraries
after libLLVM should not be a problem, as symbols will be
resolved in libLLVM first.
Finally, I'm not really happy with the
DISABLE_LLVM_LINK_LLVM option, but I'm not sure of a
better way to get the following:
- link all tools and shared libraries to libLLVM if
LLVM_LINK_LLVM_DYLIB is set
- some way of explicitly *not* doing so for utilities
and libLLVM itself
Suggestions for improvement here are particularly welcome.
Reviewers: beanz
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12590
llvm-svn: 246918
Summary:
Three closely related changes, to have a mode in which we link all
executables and shared libraries against libLLVM.
1. Add a new LLVM_LINK_LLVM_DYLIB cmake option, which, when ON, will link
executables and shared libraries against libLLVM. For this to work, it
is necessary to also set LLVM_BUILD_LLVM_DYLIB and LLVM_DYLIB_EXPORT_ALL.
It is not strictly necessary to set LLVM_DISABLE_LLVM_DYLIB_ATEXIT, but
we also default to OFF in this mode, or tools tend to misbehave (e.g.
stdout may not flush on exit when output is buffered.)
llvm-config and Tablegen do not use libLLVM, as they are dependencies of
libLLVM.
2. Modify llvm-go to take a new flag, "linkmode=component-libs|dylib".
Depending on which one is passed (default is component-libs), we link
with the individual libraries or libLLVM respectively. We pass in dylib
when LLVM_LINK_LLVM_DYLIB is ON.
3. Fix LLVM_DYLIB_EXPORT_ALL on Linux, and expand the symbols exported to
actually export all. Don't strip leading underscore from symbols on Linux,
and make sure we get all exported symbols and weak-with-default symbols
("W" in nm output). Without these changes, passes won't load because
the "Annotate..." symbols defined in lib/Support/Valigrind.cpp are not
found.
Testing:
- Ran default build ("ninja") with LLVM, clang, compiler-rt, llgo, lldb.
- Ran "check", "check-clang", "check-tsan", "check-libgo" targets. I've
never had much success with LLDB tests, and llgoi is currently broken
so check-llgo fails for an unrelated reason.
- Ran "lldb" to ensure it loads.
Reviewers: chandlerc, beanz, pcc, rnk
Subscribers: rnk, chapuni, sylvestre.ledru, llvm-commits
Differential Revision: http://reviews.llvm.org/D12488
llvm-svn: 246527
If corresponding in-tree subdirectory exists, just ignore LLVM_EXTERNAL* stuff.
Otherwise, set LLVM_TOOL_*_BUILD ON/OFF properly according to LLVM_EXTERNAL_*.
This makes easier to walk among old revisions *without* deleteing CMakeCache.txt.
Before r242059, LLVM_EXTERNAL_* was working like;
if(EXISTS ${*_SOURCE_DIR}/CMakeLists.txt)
set(*_BUILD ON CACHE)
if(*_BUILD is ON)
add_subdirectory(*_SOURCE_DIR)
endif()
endif()
llvm-svn: 245782
This reverts commit r244633.
We aren't going to be able to use it because the compiler-rt build can
be built standalone without an LLVM source dir *or* an installed copy of
LLVM.
llvm-svn: 244648
One part of my refactoring from r242705 is untenable due to how CMake caches variables. There is no way other than caching to allow variables to be set in one directory and globally readable, but we really don't want to cache the temporary value marking that a directory has already been included.
llvm-svn: 242793
Summary:
When calling llgo-go from the llvm_add_go_executable
cmake function, specify $GO_EXECUTABLE as the go
command to call. Without this, llgo-go searches $PATH
which may be inconsistent with $GO_EXECUTABLE.
Reviewers: pcc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11290
llvm-svn: 242749
Re-landing r242059 which re-landed r241621... I'm really bad at this.
Summary (r242059):
This change re-lands r241621, with an additional fix that was required to allow tool sources to live outside the llvm checkout. It also no longer renames LLVM_EXTERNAL_*_SOURCE_DIR. This change was reverted in r241663, because it renamed several variables of the format LLVM_EXTERNAL_*_* to LLVM_TOOL_*_*.
Summary (r241621):
The tools CMakeLists file already had implicit tool registration, but there were a few things off about it that needed to be altered to make it work. This change addresses all that. The changes in this patch are:
* factored out canonicalizing tool names from paths to CMake variables * removed the LLVM_IMPLICIT_PROJECT_IGNORE mechanism in favor of LLVM_EXTERNAL_${nameUPPER}_BUILD which I renamed to LLVM_TOOL_${nameUPPER}_BUILD because it applies to internal and external tools
* removed ignore_llvm_tool_subdirectory() in favor of just setting LLVM_TOOL_${nameUPPER}_BUILD to Off
* Added create_llvm_tool_options() to resolve a bug in add_llvm_external_project() - the old LLVM_EXTERNAL_${nameUPPER}_BUILD would not work on a clean CMake directory because the option could be created after it was set in code.
* Removed all but the minimum required calls to add_llvm_external_project from tools/CMakeLists.txt
Differential Revision: http://reviews.llvm.org/D10665
llvm-svn: 242705
LLVM_EXTERNAL_*_SOURCE_DIR is reset as PATH with set(CACHE PATH).
Then the CACHE PATH variable, LLVM_EXTERNAL_*_SOURCE_DIR, is normalized as
${CMAKE_SOURCE_DIR}/${path_var} if ${path_var} is relative.
llvm-svn: 242120
add_llvm_external_project puts LLVM_EXTERNAL_${nameUPPER}_SOURCE_DIR into the cache even if it is just the in-tree default path. This causes all sorts of oddness, and makes it so that I can't change the behavior of this variable.
This patch never puts LLVM_EXTERNAL_${nameUPPER}_SOURCE_DIR into the cache. It will only end up in the cache if it is specified on the command line, which is the correct behavior.
There is also a temporary change to remove non-default values from the cache if they are already present. This should have the impact of cleaning out unncecissary values from the caches on the buildbots and people's local build directories. This part of the change is marked with a TODO and can be removed in a few days.
llvm-svn: 242102
Summary:
This change re-lands r241621, with an additional fix that was required to allow tool sources to live outside the llvm checkout. It also no longer renames LLVM_EXTERNAL_*_SOURCE_DIR. This change was reverted in r241663, because it renamed several variables of the format LLVM_EXTERNAL_*_* to LLVM_TOOL_*_*.
Original Summary:
The tools CMakeLists file already had implicit tool registration, but there were a few things off about it that needed to be altered to make it work. This change addresses all that. The changes in this patch are:
* factored out canonicalizing tool names from paths to CMake variables * removed the LLVM_IMPLICIT_PROJECT_IGNORE mechanism in favor of LLVM_EXTERNAL_${nameUPPER}_BUILD which I renamed to LLVM_TOOL_${nameUPPER}_BUILD because it applies to internal and external tools
* removed ignore_llvm_tool_subdirectory() in favor of just setting LLVM_TOOL_${nameUPPER}_BUILD to Off
* Added create_llvm_tool_options() to resolve a bug in add_llvm_external_project() - the old LLVM_EXTERNAL_${nameUPPER}_BUILD would not work on a clean CMake directory because the option could be created after it was set in code.
* Removed all but the minimum required calls to add_llvm_external_project from tools/CMakeLists.txt
Differential Revision: http://reviews.llvm.org/D10665
llvm-svn: 242059