Code is mostly copied directly across, with a slight extension of the
ISelDAGToDAG function so that it can cope with the floating-point constants
being behind a litpool.
llvm-svn: 206285
ARM64 suffered multiple -verify-machineinstr failures (principally over the
xsp/xzr issue) because FastISel was completely ignoring which subset of the
general-purpose registers each instruction required.
More fixes are coming in ARM64 specific FastISel, but this should cover the
generic problems.
llvm-svn: 206283
by removing the MallocSlabAllocator entirely and just using
MallocAllocator directly. This makes all off these allocators expose and
utilize the same core interface.
The only ugly part of this is that it exposes the fact that the JIT
allocator has no real handling of alignment, any more than the malloc
allocator does. =/ It would be nice to fix both of these to support
alignments, and then to leverage that in the BumpPtrAllocator to do less
over allocation in order to manually align pointers. But, that's another
patch for another day. This patch has no functional impact, it just
removes the somewhat meaningless wrapper around MallocAllocator.
llvm-svn: 206267
allocation libraries, may allow more efficient allocation and
deallocation. It at least makes the interface implementable by the JIT
memory manager.
However, this highlights problematic overloading between the void* and
the T* deallocation functions. I'm looking into a better way to do this,
but as it happens, it comes up rarely in the codebase.
llvm-svn: 206265
overloads. This doesn't matter *that* much yet, but it will in
a subsequent patch. I had tested the original pattern, but not my
attempt to pacify MSVC. This at least appears to work. Still fixing the
rest of the fallout in the final patch that uses these overloads, but it
will follow shortly.
llvm-svn: 206259
'sizeof(T)' for T == void and produces a hard error. I cannot fathom why
this is OK. Oh well. switch to an explicit test for being the
(potentially qualified) void type, which is the only specific case I was
worried about. Hopefully this survives the libstdc++ build bots which
have limited type traits implementations...
llvm-svn: 206256
to types which we can compute the size of. The comparison with zero
isn't actually interesting here, it's mostly about putting sizeof into
a sfinae context.
This is particular important for Deallocate as otherwise the void*
overload can quickly become ambiguous.
llvm-svn: 206251
MCModule's ctor had to be moved out of line so the definition of
MCFunction was available. (ctor requires the dtor of members (in case
the ctor throws) which required access to the dtor of MCFunction)
llvm-svn: 206244
This patch re-introduces the MCContext member that was removed from
MCDisassembler in r206063, and requires that an MCContext be passed in at
MCDisassembler construction time. (Previously the MCContext member had been
initialized in an ad-hoc fashion after construction). The MCCContext member
can be used by MCDisassembler sub-classes to construct constant or
target-specific MCExprs.
This patch updates disassemblers for in-tree targets, and provides the
MCRegisterInfo instance that some disassemblers were using through the
MCContext (previously those backends were constructing their own
MCRegisterInfo instances).
llvm-svn: 206241
*not* Subtarget->hasSSE1()
*but* __SSE__, the flag that LLVM libraries are compiled
The callback calls internal LLVM JIT libraries. It may be built with -msse (or above).
FIXME: JIT may use "host" instead of "generic" by default.
llvm-svn: 206240
Currently, we bind those directives with the last symbol, so if none
has been defined, this would lead to a crash of the compiler.
<rdar://problem/15939159>
llvm-svn: 206236
along with templated overloads much like we have for Allocate. These
will facilitate switching the Deallocate interface of all the Allocator
classes to accept the size by pre-filling it from the type size where we
can do so. I plan to convert several uses to the template variants in
subsequent patches prior to adding the Size parameter.
No functionality changed, WIP.
llvm-svn: 206230
rather than defining them (differently!) in both allocators. This also
serves as a basis for documenting and even enforcing some of the
LLVM-style "allocator" concept methods which must exist with various
signatures.
I plan on extending and changing the signatures of these to further
simplify our allocator model in subsequent commits, so I wanted to
factor things as best as I could first. Notably, I'm working to add the
'Size' to the deallocation method of all allocators. This has several
implications not the least of which are faster deallocation times on
certain allocation libraries (tcmalloc). It also will allow the JIT
allocator to fully model the existing allocation interfaces and allow
sanitizer poisoning of deallocated regions. The list of advantages goes
on. =] But by factoring things first I'll be able to make this easier by
first introducing template helpers for the deallocation path.
llvm-svn: 206225
Got bored, removed some manual memory management.
Pushed references (rather than pointers) through a few APIs rather than
replacing *x with x.get().
llvm-svn: 206222
Thanks to dblaikie for updating the testcase!
Debug info: (bugfix) C++ C/Dtors can be compiled to multiple functions,
therefore, their declaration cannot have one DW_AT_linkage_name.
The specific instances however can and should have that attribute.
This patch reorders the code in DwarfUnit::getOrCreateSubprogramDIE()
to emit linkage names for C/Dtors.
rdar://problem/16362674.
llvm-svn: 206210
small formatting inconsistencies with the rest of LLVM and even this
file. I looked at all the changes and they seemed like just better
formatting.
llvm-svn: 206209
In rare cases the dead definition elimination pass code can cause illegal cmn
instructions when it replaces dead registers on instructions that use
unmaterialized frame indexes. This patch disables the dead definition
optimization for instructions which include frame index operands.
rdar://16438284
llvm-svn: 206208
Previously, BranchProbabilityInfo::calcLoopBranchHeuristics would determine the weights of basic blocks inside loops even when it didn't have enough information to estimate the branch probabilities correctly. This patch fixes the function to exit early if it doesn't see any exit edges or back edges and let the later heuristics determine the weights.
This fixes PR18705 and <rdar://problem/15991090>.
Differential Revision: http://reviews.llvm.org/D3363
llvm-svn: 206194
This allows correct relocations to be generated for a symbolic
address that is being adjusted by a negative constant. Since r204294,
such expressions have triggered undefined behavior when LLVM was built
without assertions.
Credit goes to Rafael for this patch; I'm submitting it on his behalf
as he is on vacation this week.
llvm-svn: 206192
Once the auxiliary fields relating to the filename have been inspected, any
following auxiliary fields need not be visited as they have been consumed (the
following fields comprise the filepath as a single unit).
Adjust the test to catch this even if ASAN is not enabled.
llvm-svn: 206190
Summary:
This was another incorrect use of hasMips64() vs isGP64bit().
Depends on D3344
Reviewers: matheusalmeida, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3347
llvm-svn: 206187
Summary:
Two exceptions to this:
test/CodeGen/Mips/octeon.ll
test/CodeGen/Mips/octeon_popcnt.ll
these test extensions to MIPS64
One test is altered for MIPS-IV:
test/CodeGen/Mips/mips64countleading.ll
Tests dclo/dclz which were added in MIPS64. The MIPS-IV version tests
that dclo/dclz are not emitted.
Four tests fail and are not in this patch:
test/CodeGen/Mips/abicalls.ll
test/CodeGen/Mips/fcopysign-f32-f64.ll
test/CodeGen/Mips/fcopysign.ll
test/CodeGen/Mips/stack-alignment.ll
Depends on D3343
Reviewers: matheusalmeida, vmedic
Reviewed By: vmedic
Differential Revision: http://reviews.llvm.org/D3344
llvm-svn: 206185
Summary:
- Conditional moves acting on 64-bit GPR's should require MIPS-IV rather than MIPS64
- ISD::MUL, and ISD::MULH[US] should be lowered on all 64-bit ISA's
Patch by David Chisnall
His work was sponsored by: DARPA, AFRL
I've added additional testcases to cover as much of the codegen changes
affecting MIPS-IV as I can. Where I've been unable to find an existing
MIPS64 testcase that can be re-used for MIPS-IV (mainly tests covering
ISD::GlobalAddress and similar), I at least agree that MIPS-IV should
behave like MIPS64. Further testcases that are fixed by this patch will follow
in my next commit. The testcases from that commit that fail for MIPS-IV without
this patch are:
LLVM :: CodeGen/Mips/2010-07-20-Switch.ll
LLVM :: CodeGen/Mips/cmov.ll
LLVM :: CodeGen/Mips/eh-dwarf-cfa.ll
LLVM :: CodeGen/Mips/largeimmprinting.ll
LLVM :: CodeGen/Mips/longbranch.ll
LLVM :: CodeGen/Mips/mips64-f128.ll
LLVM :: CodeGen/Mips/mips64directive.ll
LLVM :: CodeGen/Mips/mips64ext.ll
LLVM :: CodeGen/Mips/mips64fpldst.ll
LLVM :: CodeGen/Mips/mips64intldst.ll
LLVM :: CodeGen/Mips/mips64load-store-left-right.ll
LLVM :: CodeGen/Mips/sint-fp-store_pattern.ll
Reviewers: dsanders
Reviewed By: dsanders
CC: matheusalmeida
Differential Revision: http://reviews.llvm.org/D3343
llvm-svn: 206183
There was one definite issue in ARM64 (the off-by-1 check for whether
a shift could be folded in) and one difference that is probably
correct: ARM64 didn't fold nodes with multiple uses into the
arithmetic operations unless optimising for code size.
llvm-svn: 206168
Summary:
Previously loadImmediate() would produce MKMSK instructions with invalid
immediate values such as mkmsk r0, 9. Fix this by checking the mask size
is valid.
Reviewers: robertlytton
Reviewed By: robertlytton
CC: llvm-commits
Differential Revision: http://reviews.llvm.org/D3289
llvm-svn: 206163
declaration. GCC 4.7 appears to get hopelessly confused by declaring
this function within a member function of a class template. Go figure.
llvm-svn: 206152
BasicTTI::getMemoryOpCost must explicitly check for non-simple types; setting
AllowUnknown=true with TLI->getSimpleValueType is not sufficient because, for
example, non-power-of-two vector types return non-simple EVTs (not MVT::Other).
llvm-svn: 206150
abstract interface. The only user of this functionality is the JIT
memory manager and it is quite happy to have a custom type here. This
removes a virtual function call and a lot of unnecessary abstraction
from the common case where this is just a *very* thin vaneer around
a call to malloc.
Hopefully still no functionality changed here. =]
llvm-svn: 206149
slabs rather than embedding a singly linked list in the slabs
themselves. This has a few advantages:
- Better utilization of the slab's memory by not wasting 16-bytes at the
front.
- Simpler allocation strategy by not having a struct packed at the
front.
- Avoids paging every allocated slab in just to traverse them for
deallocating or dumping stats.
The latter is the really nice part. Folks have complained from time to
time bitterly that tearing down a BumpPtrAllocator, even if it doesn't
run any destructors, pages in all of the memory allocated. Now it won't.
=]
Also resolves a FIXME with the scaling of the slab sizes. The scaling
now disregards specially sized slabs for allocations larger than the
threshold.
llvm-svn: 206147
Rather than switching behaviour on whether a previous symbol has an auxiliary
symbol record for the next count of elements, simply iterate over the auxiliary
symbols right after processing the current symbol entry. This makes the
behaviour much simpler to follow and similar to llvm-readobj and yaml2obj.
llvm-svn: 206146
If a filename is a multiple of 18 characters, there will be no null-terminator.
This will result in an invalid access by the constructed StringRef. Add a test
case to exercise this and fix that handling. Address this same vulnerability in
llvm-readobj as well.
llvm-svn: 206145
Implements the various TTI functions to enable constant hoisting on PPC. The
only significant test-suite change is this:
MultiSource/Benchmarks/VersaBench/bmm/bmm - 20% speedup
(which essentially reverses the slowdown from r206120).
llvm-svn: 206141
The auxiliary file records are contiguous and only contain the filename.
Construct a StringRef directly rather than copying to a temporary buffer.
Suggested by majnemer on IRC!
llvm-svn: 206139
The values for the relocation type can (and do) overlap across various
architectures. When performing an adjustment of the emitted relocation in the
final object file, check that the file magic matches the target for which the
relocation type is valid (e.g. a I386 relocation is only applied to an X86
object file, and an AMD64 relocation is only applied to an X86_64 object file).
This was noticed while adding support for ARM WinCOFF object file emission.
A test case for this is not really possible as the values for REL32 do not
overlap on I386 and AMD64, which is why this was never noticed in practice. The
ARM WinCOFF emission is not yet ready to merge into the tree.
llvm-svn: 206138
If multiplication involves zero-extended arguments and the result is
compared as in the patterns:
%mul32 = trunc i64 %mul64 to i32
%zext = zext i32 %mul32 to i64
%overflow = icmp ne i64 %mul64, %zext
or
%overflow = icmp ugt i64 %mul64 , 0xffffffff
then the multiplication may be replaced by call to umul.with.overflow.
This change fixes PR4917 and PR4918.
Differential Revision: http://llvm-reviews.chandlerc.com/D2814
llvm-svn: 206137
We had been using the known-zero values of the operand of the or to construct
the mask for an rlwimi; this is not quite correct, but fine when the mask is
constant. When the mask is constant, then the known zeros of the operand must
be a superset of the zeros in the mask. However, when the mask is not a
constant, then there might be bits in the operand that are not known to be zero
that, at runtime, might be zero in the mask. Therefore, we check that any bits
not known to be zero *are* known to be one in the mask. Otherwise, we can't
fold the mask with the or and shift.
This was revealed as a miscompile of
MultiSource/Benchmarks/BitBench/drop3/drop3 when I started experimenting with
constant hoisting.
llvm-svn: 206136
I found this from a particular GDB test suite case of inlining
(something similar is provided as a test case) but came across a few
other related cases (other callers of the same functions, and one other
instance of the same coding mistake in a separate function).
I'm not sure what the best way to test this is (let alone to cover the
other cases I discovered), so hopefully this sufficies - open to ideas.
llvm-svn: 206130
Add support for file auxiliary symbol entries in COFF symbol tables. A COFF
symbol table with a FILE entry is followed by sizeof(__FILE__) / 18 auxiliary
symbol records which contain the filename. Read them and form the original
filename that the record contains. Then display the name in the output.
llvm-svn: 206126