Right now we only use this information in one place, immediately after
we calculate it, but it's still nice information to have. The Swift
project is going to use this to tidy up its "API notes" feature (see
past discussion on cfe-dev that never quite converged).
Reviewed by Bruno Cardoso Lopes.
llvm-svn: 330452
When modules come from module map files explicitly specified by
-fmodule-map-file= arguments, allow those to override/shadow modules
with the same name that are found implicitly by header search. If such a
module is looked up by name (e.g. @import), we will always find the one
from -fmodule-map-file. If we try to use a shadowed module by including
one of its headers report an error.
This enables developers to force use of a specific copy of their module
to be used if there are multiple copies that would otherwise be visible,
for example if they develop modules that are installed in the default
search paths.
Patch originally by Ben Langmuir,
http://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20151116/143425.html
Based on cfe-dev discussion:
http://lists.llvm.org/pipermail/cfe-dev/2015-November/046164.html
Differential Revision: https://reviews.llvm.org/D31269
rdar://problem/23612102
llvm-svn: 321855
When modules come from module map files explicitly specified by
-fmodule-map-file= arguments, allow those to override/shadow modules
with the same name that are found implicitly by header search. If such a
module is looked up by name (e.g. @import), we will always find the one
from -fmodule-map-file. If we try to use a shadowed module by including
one of its headers report an error.
This enables developers to force use of a specific copy of their module
to be used if there are multiple copies that would otherwise be visible,
for example if they develop modules that are installed in the default
search paths.
Patch originally by Ben Langmuir,
http://lists.llvm.org/pipermail/cfe-commits/Week-of-Mon-20151116/143425.html
Based on cfe-dev discussion:
http://lists.llvm.org/pipermail/cfe-dev/2015-November/046164.html
Differential Revision: https://reviews.llvm.org/D31269
rdar://problem/23612102
llvm-svn: 321781
Introduce a new "export_as" directive for top-level modules, which
indicates that the current module is a "private" module whose symbols
will eventually be exported through the named "public" module. This is
in support of a common pattern in the Darwin ecosystem where a single
public framework is constructed of several private frameworks, with
(currently) header duplication and some support from the linker.
Addresses rdar://problem/34438420.
llvm-svn: 313316
This patch adds support for a `header` declaration in a module map to specify
certain `stat` information (currently, size and mtime) about that header file.
This has two purposes:
- It removes the need to eagerly `stat` every file referenced by a module map.
Instead, we track a list of unresolved header files with each size / mtime
(actually, for simplicity, we track submodules with such headers), and when
attempting to look up a header file based on a `FileEntry`, we check if there
are any unresolved header directives with that `FileEntry`'s size / mtime and
perform deferred `stat`s if so.
- It permits a preprocessed module to be compiled without the original files
being present on disk. The only reason we used to need those files was to get
the `stat` information in order to do header -> module lookups when using the
module. If we're provided with the `stat` information in the preprocessed
module, we can avoid requiring the files to exist.
Unlike most `header` directives, if a `header` directive with `stat`
information has no corresponding on-disk file the enclosing module is *not*
marked unavailable (so that behavior is consistent regardless of whether we've
resolved a header directive, and so that preprocessed modules don't get marked
unavailable). We could actually do this for all `header` directives: the only
reason we mark the module unavailable if headers are missing is to give a
diagnostic slightly earlier (rather than waiting until we actually try to build
the module / load and validate its .pcm file).
Differential Revision: https://reviews.llvm.org/D33703
llvm-svn: 304515
Summary: In order for libc++ to add `<experimental/coroutine>` to its module map, there has to be a feature that can be used to detect if coroutines support is enabled in Clang.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D33538
llvm-svn: 304107
Summary: In order for libc++ to add `<experimental/coroutine>` to its module map, there has to be a feature that can be used to detect if coroutines support is enabled in Clang.
Reviewers: rsmith
Reviewed By: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D33538
llvm-svn: 304054
Some decls are created not where they are written, but in other module
files/users (implicit special members and function template implicit
specializations). To correctly identify them, use a bit next to the definition
to track the modular codegen property.
Discussed whether the module file bit could be omitted in favor of
reconstituting from the modular codegen decls list - best guess today is that
the efficiency improvement of not having to deserialize the whole list whenever
any function is queried by a module user is worth it for the small size
increase of this redundant (list + bit-on-def) representation.
Reviewers: rsmith
Differential Revision: https://reviews.llvm.org/D29901
llvm-svn: 299982
Change ASTFileSignature from a random 32-bit number to the hash of the
PCM content.
- Move definition ASTFileSignature to Basic/Module.h so Module and
ASTSourceDescriptor can use it.
- Change the signature from uint64_t to std::array<uint32_t,5>.
- Stop using (saving/reading) the size and modification time of PCM
files when there is a valid SIGNATURE.
- Add UNHASHED_CONTROL_BLOCK, and use it to store the SIGNATURE record
and other records that shouldn't affect the hash. Because implicit
modules reuses the same file for multiple levels of -Werror, this
includes DIAGNOSTIC_OPTIONS and DIAG_PRAGMA_MAPPINGS.
This helps to solve a PCH + implicit Modules dependency issue: PCH files
are handled by the external build system, whereas implicit modules are
handled by internal compiler build system. This prevents invalidating a
PCH when the compiler overwrites a PCM file with the same content
(modulo the diagnostic differences).
Design and original patch by Manman Ren!
llvm-svn: 297655
First pass at generating weak definitions of inline functions from module files
(& skipping (-O0) or emitting available_externally (optimizations)
definitions where those modules are used).
External functions defined in modules are emitted into the modular
object file as well (this may turn an existing ODR violation (if that
module were imported into multiple translations) into valid/linkable
code).
Internal symbols (static functions, for example) are not correctly
supported yet. The symbol will be produced, internal, in the modular
object - unreferenceable from the users.
Reviewers: rsmith
Differential Revision: https://reviews.llvm.org/D28845
llvm-svn: 293456
The 'no_undeclared_includes' attribute should be used in a module to
tell that only non-modular headers and headers from used modules are
accepted.
The main motivation behind this is to prevent dep cycles between system
libraries (such as darwin) and libc++.
Patch by Richard Smith!
llvm-svn: 284797
This adds support for modules that require (non-)freestanding
environment, such as the compiler builtin mm_malloc submodule.
Differential Revision: https://reviews.llvm.org/D23871
llvm-svn: 280613
This adds support for modules that require (no-)gnu-inline-asm
environment, such as the compiler builtin cpuid submodule.
This is the gnu-inline-asm variant of https://reviews.llvm.org/D23871
Differential Revision: https://reviews.llvm.org/D23905
rdar://problem/26931199
llvm-svn: 280159
Update the Preprocessor's VisibleModuleSet when typo-correction creates
an implicit module import so that we won't accidentally write an invalid
SourceLocation into the preamble AST. This would later lead to infinite
recursion when loading the preamble AST because we use the value in
ImportLocs to prevent visiting a module twice.
rdar://problem/24440990
llvm-svn: 260543
we can't load that file due to a configuration mismatch, and implicit module
building is disabled, and the user turns off the error-by-default warning for
that situation, then fall back to textual inclusion for the module rather than
giving an error if any of its headers are included.
llvm-svn: 252114
This preserves backwards compatibility for two hacks in the Darwin
system module map files:
1. The use of 'requires excluded' to make headers non-modular, which
should really be mapped to 'textual' now that we have this feature.
2. Silently removes a bogus cplusplus requirement from IOKit.avc.
Once we start diagnosing missing requirements and headers on
auto-imports these would have broken compatibility with existing Darwin
SDKs.
llvm-svn: 244912
The z13 vector facility has an associated language extension,
closely modeled on AltiVec/VSX. The main differences are:
- vector long, vector float and vector pixel are not supported
- vector long long and vector double are supported (like VSX)
- comparison operators return a vector rather than a scalar integer
- shift operators behave like the OpenCL shift operators
- vector bool is only supported as argument to certain operators;
some operators allow mixing a bool with a non-bool vector
This patch adds clang support for the extension. It is closely modelled
on the AltiVec support. Similarly to the -faltivec option, there's a
new -fzvector option to enable the extensions (as well as an -mzvector
alias for compatibility with GCC). There's also a separate LangOpt.
The extension as implemented here is intended to be compatible with
the -mzvector extension recently implemented by GCC.
Based on a patch by Richard Sandiford.
Differential Revision: http://reviews.llvm.org/D11001
llvm-svn: 243642
And make the module unavailable without breaking any parent modules.
If there's a missing requirement after we've already seen a missing
header, still update the IsMissingRequiement bit correctly. Also,
diagnose missing requirements before missing headers, since the
existence of the header is moot if there are missing requirements.
llvm-svn: 242055
It has no place there; it's not a property of the Module, and it makes
restoring the visibility set when we leave a submodule more difficult.
llvm-svn: 236300
I'm not sure why we have OS.indent(Indent+2) for the system attribute,
but presumably we want the same behaviour for all attributes...
llvm-svn: 225802
rather than trying to extract this information from the FileEntry after the
fact.
This has a number of beneficial effects. For instance, diagnostic messages for
failed module builds give a path relative to the "module root" rather than an
absolute file path, and the contents of the module includes file is no longer
dependent on what files the including TU happened to inspect prior to
triggering the module build.
llvm-svn: 223095
This allows a module to specify that it logically contains a file, but that
said file is non-modular and intended for textual inclusion. This allows
layering checks to work properly in the presence of such files.
llvm-svn: 220448
class Module. It's almost always going to be the same as
getContainingModule() for top-level modules, so just add a map to cover
the remaining cases. This lets us do less bookkeeping to keep the
ModuleMap fields up to date.
llvm-svn: 215268
Otherwise including a header in your source file that is not included by
framework's umbrella header will silently add an empty submodule with that
name.
is automatically translated to
@import Foo.NotInModule;
which then would have succeeded because the inferred module map
contained an empty submodule called NotInModule.
llvm-svn: 207024
If a module doesn't meet a requirement, neither do its submodules. If we
don't propogate that, we might think it's an error to be missing a
header in one of those submodules.
llvm-svn: 206673
Unless they are in submodules that aren't available anyway, due to
requirements not being met. Also, mark children as unavailable when the
parent is.
llvm-svn: 206664
To differentiate between two modules with the same name, we will
consider the path the module map file that they are defined by* part of
the ‘key’ for looking up the precompiled module (pcm file).
Specifically, this patch renames the precompiled module (pcm) files from
cache-path/<module hash>/Foo.pcm
to
cache-path/<module hash>/Foo-<hash of module map path>.pcm
In addition, I’ve taught the ASTReader to re-resolve the names of
imported modules during module loading so that if the header search
context changes between when a module was originally built and when it
is loaded we can rebuild it if necessary. For example, if module A
imports module B
first time:
clang -I /path/to/A -I /path/to/B ...
second time:
clang -I /path/to/A -I /different/path/to/B ...
will now rebuild A as expected.
* in the case of inferred modules, we use the module map file that
allowed the inference, not the __inferred_module.map file, since the
inferred file path is the same for every inferred module.
llvm-svn: 206201
Instead, mark the module as unavailable so that clang errors as soon as
someone tries to build this module.
This works towards the long-term goal of not stat'ing the header files at all
while reading the module map and instead read them only when the module is
being built (there is a corresponding FIXME in parseHeaderDecl()). However, it
seems non-trivial to get there and this unblock us and moves us into the right
direction.
Also changed the implementation to reuse the same DiagnosticsEngine.
llvm-svn: 197485
This change fixes Richard's testcase for r193815. Now we include non-explicit
submodules into the list of exports.
The test failed previously because:
- recursive_visibility_a1.inner is not imported (only recursive_visibility_a1 is),
- thus the 'inner' submodule is not showing up in any of the import lists,
- and because of this getExportedModules() is not returning the
correct module set -- it only considers modules that are imported.
The fix is to make Module::getExportedModules() include non-explicit submodules
into the list of exports.
llvm-svn: 194018
This change makes Module::buildVisibleModulesCache() collect exported modules
recursively.
While computing a set of exports, getExportedModules() iterates over the set of
imported modules and filters it. But it does not consider the set of exports
of those modules -- it is the responsibility of the caller to do this.
Here is a certain instance of this issue. Module::isModuleVisible says that
CoreFoundation.CFArray submodule is not visible from Cocoa. Why?
- Cocoa imports Foundation.
- Foundation has an export restriction: "export *".
- Foundation imports CoreFoundation. (Just the top-level module.)
- CoreFoundation exports CoreFoundation.CFArray.
To decide which modules are visible from Cocoa, we collect all exported modules
from immediate imports in Cocoa:
> visibleModulesFro(Cocoa) = exported(Foundation) + exported(CoreData) + exported(AppKit)
To find out which modules are exported, we filter imports according to
restrictions:
> exported(Foundation) = filterByModuleMapRestrictions(imports(Foundation))
Because Foundation imports CoreFoundation (not CoreFoundation.CFArray), the
CFArray submodule is considered not exported from Foundation, and is not
visible from Cocoa (according to Module::isModuleVisible).
llvm-svn: 193815
requires ! feature
The purpose of this is to allow (for instance) the module map for /usr/include
to exclude <tgmath.h> and <complex.h> when building in C++ (these headers are
instead provided by the C++ standard library in this case, and the glibc C
<tgmath.h> header would otherwise try to include <complex.h>, resulting in a
module cycle).
llvm-svn: 193549
Review: http://llvm-reviews.chandlerc.com/D1546.
I have picked up this patch form Lawrence
(http://llvm-reviews.chandlerc.com/D1063) and did a few changes.
From the original change description (updated as appropriate):
This patch adds a check that ensures that modules only use modules they
have so declared. To this end, it adds a statement on intended module
use to the module.map grammar:
use module-id
A module can then only use headers from other modules if it 'uses' them.
This enforcement is off by default, but may be turned on with the new
option -fmodules-decluse.
When enforcing the module semantics, we also need to consider a source
file part of a module. This is achieved with a compiler option
-fmodule-name=<module-id>.
The compiler at present only applies restrictions to the module directly
being built.
llvm-svn: 191283
sufficient to only consider names visible at the point of instantiation,
because that may not include names that were visible when the template was
defined. More generally, if the instantiation backtrace goes through a module
M, then every declaration visible within M should be available to the
instantiation. Any of those declarations might be part of the interface that M
intended to export to a template that it instantiates.
The fix here has two parts:
1) If we find a non-visible declaration during name lookup during template
instantiation, check whether the declaration was visible from the defining
module of all entities on the active template instantiation stack. The defining
module is not the owning module in all cases: we look at the module in which a
template was defined, not the module in which it was first instantiated.
2) Perform pending instantiations at the end of a module, not at the end of the
translation unit. This is general goodness, since it significantly cuts down
the amount of redundant work that is performed in every TU importing a module,
and also implicitly adds the module containing the point of instantiation to
the set of modules checked for declarations in a lookup within a template
instantiation.
There's a known issue here with template instantiations performed while
building a module, if additional imports are added later on. I'll fix that
in a subsequent commit.
llvm-svn: 187167