Commit Graph

183 Commits

Author SHA1 Message Date
Sumesh Udayakumaran b2af2aeea6 [mlir] Mode for explicitly controlling the fusion kind
New mode option that allows for either running the default fusion kind that happens today or doing either of producer-consumer or sibling fusion. This will also be helpful to minimize the compile-time of the fusion tests.

Reviewed By: bondhugula, dcaballe

Differential Revision: https://reviews.llvm.org/D110102
2021-09-27 20:37:42 +03:00
Matthias Springer c19c51e357 [mlir][Analysis][NFC] Clean up FlatAffineValueConstraints
* Rename ids to values in FlatAffineValueConstraints.
* Overall cleanup of comments in FlatAffineConstraints and FlatAffineValueConstraints.

Differential Revision: https://reviews.llvm.org/D107947
2021-08-17 10:38:57 +09:00
Matthias Springer 4c4ab673f1 [mlir][Analysis][NFC] Split FlatAffineConstraints class
* Extract "value" functionality of `FlatAffineConstraints` into a new derived `FlatAffineValueConstraints` class. Current users of `FlatAffineConstraints` can use `FlatAffineValueConstraints` without additional code changes, thus NFC.
* `FlatAffineConstraints` no longer associates dimensions with SSA Values. All functionality that requires this, is moved to `FlatAffineValueConstraints`.
* `FlatAffineConstraints` no longer makes assumptions about where Values associated with dimensions are coming from.

Differential Revision: https://reviews.llvm.org/D107725
2021-08-17 10:09:17 +09:00
Tung D. Le a2186277be [mlir][affine-loop-fusion] Fix a bug that AffineIfOp prevents fusion of the other loops
The presence of AffineIfOp inside AffineFor prevents fusion of the other loops to happen. For example:

```
  affine.for %i0 = 0 to 10 {
    affine.store %cf7, %a[%i0] : memref<10xf32>
  }
  affine.for %i1 = 0 to 10 {
    %v0 = affine.load %a[%i1] : memref<10xf32>
    affine.store %v0, %b[%i1] : memref<10xf32>
  }
  affine.for %i2 = 0 to 10 {
    affine.if #set(%i2) {
      %v0 = affine.load %b[%i2] : memref<10xf32>
    }
  }
```

The first two loops were not be fused because of `affine.if` inside the last `affine.for`.

The issue seems to come from a conservative constraint that does not allow fusion if there are ops whose number of regions != 0 (affine.if is one of them).

This patch just removes such a constraint when`affine.if` is inside `affine.for`.  The existing `canFuseLoops` method is able to handle `affine.if` correctly.

Reviewed By: bondhugula, vinayaka-polymage

Differential Revision: https://reviews.llvm.org/D105963
2021-07-30 15:22:46 +05:30
Sumesh Udayakumaran ada580863f [mlir] Enable cleanup of single iteration reduction loops being sibling-fused maximally
Changes include the following:
    1. Single iteration reduction loops being sibling fused at innermost insertion level
     are skipped from being considered as sequential loops.
    Otherwise, the slice bounds of these loops is reset.

    2. Promote loops that are skipped in previous step into outer loops.

    3. Two utility function - buildSliceTripCountMap, getSliceIterationCount - are moved from
mlir/lib/Transforms/Utils/LoopFusionUtils.cpp to mlir/lib/Analysis/Utils.cpp

Reviewed By: bondhugula, vinayaka-polymage

Differential Revision: https://reviews.llvm.org/D104249
2021-07-16 00:07:20 +03:00
Vinayaka Bandishti a3917d3670 [MLIR][Affine] Privatize certain escaping memrefs
During affine loop fusion, create private memrefs for escaping memrefs
too under the conditions that:
-- the source is not removed after fusion, and
-- the destination does not write to the memref.

This creates more fusion opportunities as illustrated in the test case.

Reviewed By: bondhugula, ayzhuang

Differential Revision: https://reviews.llvm.org/D102604
2021-05-18 22:23:02 +05:30
Amy Zhuang 5dc1ed3f62 [mlir] Update dstNode after DenseMap insertion in loop fusion pass.
Reviewed By: vinayaka-polymage

Differential Revision: https://reviews.llvm.org/D101794
2021-05-06 15:23:59 -07:00
River Riddle 4efb7754e0 [mlir][NFC] Add a using directive for llvm::SetVector
Differential Revision: https://reviews.llvm.org/D100436
2021-04-15 16:09:34 -07:00
Julian Gross e2310704d8 [MLIR] Create memref dialect and move dialect-specific ops from std.
Create the memref dialect and move dialect-specific ops
from std dialect to this dialect.

Moved ops:
AllocOp -> MemRef_AllocOp
AllocaOp -> MemRef_AllocaOp
AssumeAlignmentOp -> MemRef_AssumeAlignmentOp
DeallocOp -> MemRef_DeallocOp
DimOp -> MemRef_DimOp
MemRefCastOp -> MemRef_CastOp
MemRefReinterpretCastOp -> MemRef_ReinterpretCastOp
GetGlobalMemRefOp -> MemRef_GetGlobalOp
GlobalMemRefOp -> MemRef_GlobalOp
LoadOp -> MemRef_LoadOp
PrefetchOp -> MemRef_PrefetchOp
ReshapeOp -> MemRef_ReshapeOp
StoreOp -> MemRef_StoreOp
SubViewOp -> MemRef_SubViewOp
TransposeOp -> MemRef_TransposeOp
TensorLoadOp -> MemRef_TensorLoadOp
TensorStoreOp -> MemRef_TensorStoreOp
TensorToMemRefOp -> MemRef_BufferCastOp
ViewOp -> MemRef_ViewOp

The roadmap to split the memref dialect from std is discussed here:
https://llvm.discourse.group/t/rfc-split-the-memref-dialect-from-std/2667

Differential Revision: https://reviews.llvm.org/D98041
2021-03-15 11:14:09 +01:00
Vladislav Vinogradov 37eca08e5b [mlir][NFC] Rename `MemRefType::getMemorySpace` to `getMemorySpaceAsInt`
Just a pure method renaming.

It is a preparation step for replacing "memory space as raw integer"
with more generic "memory space as attribute", which will be done in
separate commit.

The `MemRefType::getMemorySpace` method will return `Attribute` and
become the main API, while `getMemorySpaceAsInt` will be declared as
deprecated and will be replaced in all in-tree dialects (also in separate
commits).

Reviewed By: mehdi_amini, rriddle

Differential Revision: https://reviews.llvm.org/D97476
2021-03-02 11:08:54 +03:00
Vinayaka Bandishti ce0f10a1d1 [MLIR][affine] Certain Call Ops to prevent fusion
Fixes a bug in affine fusion pipeline where an incorrect fusion is performed
despite a Call Op that potentially modifies memrefs under consideration
exists between source and target.

Fixes part of https://bugs.llvm.org/show_bug.cgi?id=49220

Reviewed By: bondhugula, dcaballe

Differential Revision: https://reviews.llvm.org/D97252
2021-02-26 15:27:41 +05:30
Tung D. Le 203d5eeec5 [MLIR][affine-loop-fusion] Handle defining ops between the source and dest loops
This patch handles defining ops between the source and dest loop nests, and prevents loop nests with `iter_args` from being fused.

If there is any SSA value in the dest loop nest whose defining op has dependence from the source loop nest, we cannot fuse the loop nests.

If there is a `affine.for` with `iter_args`, prevent it from being fused.

Reviewed By: dcaballe, bondhugula

Differential Revision: https://reviews.llvm.org/D97030
2021-02-25 18:12:34 +02:00
Vinayaka Bandishti 15332982c3 [MLIR][affine] Prevent fusion when ops with memory effect free are present between producer and consumer
This commit fixes a bug in affine fusion pipeline where an
incorrect fusion is performed despite a dealloc op is present
between a producer and a consumer. This is done by creating a
node for dealloc op in the MDG.

Reviewed By: bondhugula, dcaballe

Differential Revision: https://reviews.llvm.org/D97032
2021-02-22 23:21:02 +05:30
Alexander Belyaev a89035d750 Revert "[MLIR] Create memref dialect and move several dialect-specific ops from std."
This commit introduced a cyclic dependency:
Memref dialect depends on Standard because it used ConstantIndexOp.
Std depends on the MemRef dialect in its EDSC/Intrinsics.h

Working on a fix.

This reverts commit 8aa6c3765b.
2021-02-18 12:49:52 +01:00
Julian Gross 8aa6c3765b [MLIR] Create memref dialect and move several dialect-specific ops from std.
Create the memref dialect and move several dialect-specific ops without
dependencies to other ops from std dialect to this dialect.

Moved ops:
AllocOp -> MemRef_AllocOp
AllocaOp -> MemRef_AllocaOp
DeallocOp -> MemRef_DeallocOp
MemRefCastOp -> MemRef_CastOp
GetGlobalMemRefOp -> MemRef_GetGlobalOp
GlobalMemRefOp -> MemRef_GlobalOp
PrefetchOp -> MemRef_PrefetchOp
ReshapeOp -> MemRef_ReshapeOp
StoreOp -> MemRef_StoreOp
TransposeOp -> MemRef_TransposeOp
ViewOp -> MemRef_ViewOp

The roadmap to split the memref dialect from std is discussed here:
https://llvm.discourse.group/t/rfc-split-the-memref-dialect-from-std/2667

Differential Revision: https://reviews.llvm.org/D96425
2021-02-18 11:29:39 +01:00
Adam Straw 99c0458f2f separate AffineMapAccessInterface from AffineRead/WriteOpInterface
Separating the AffineMapAccessInterface from AffineRead/WriteOp interface so that dialects which extend Affine capabilities (e.g. PlaidML PXA = parallel extensions for Affine) can utilize relevant passes (e.g. MemRef normalization).

Reviewed By: bondhugula

Differential Revision: https://reviews.llvm.org/D96284
2021-02-16 13:05:27 -08:00
Tung D. Le 05c6c648ec [MLIR] [affine-loop-fusion] Fix a bug about non-result ops in affine-loop-fusion
This patch fixes the following bug when calling --affine-loop-fusion

Input program:
 ```mlir
func @should_not_fuse_since_top_level_non_affine_non_result_users(
    %in0 : memref<32xf32>, %in1 : memref<32xf32>) {
  %c0 = constant 0 : index
  %cst_0 = constant 0.000000e+00 : f32

  affine.for %d = 0 to 32 {
    %lhs = affine.load %in0[%d] : memref<32xf32>
    %rhs = affine.load %in1[%d] : memref<32xf32>
    %add = addf %lhs, %rhs : f32
    affine.store %add, %in0[%d] : memref<32xf32>
  }
  store %cst_0, %in0[%c0] : memref<32xf32>
  affine.for %d = 0 to 32 {
    %lhs = affine.load %in0[%d] : memref<32xf32>
    %rhs = affine.load %in1[%d] : memref<32xf32>
    %add = addf %lhs, %rhs: f32
    affine.store %add, %in0[%d] : memref<32xf32>
  }
  return
}
```

call --affine-loop-fusion, we got an incorrect output:

```mlir
func @should_not_fuse_since_top_level_non_affine_non_result_users(%arg0: memref<32xf32>, %arg1: memref<32xf32>) {
  %c0 = constant 0 : index
  %cst = constant 0.000000e+00 : f32
  store %cst, %arg0[%c0] : memref<32xf32>
  affine.for %arg2 = 0 to 32 {
    %0 = affine.load %arg0[%arg2] : memref<32xf32>
    %1 = affine.load %arg1[%arg2] : memref<32xf32>
    %2 = addf %0, %1 : f32
    affine.store %2, %arg0[%arg2] : memref<32xf32>
    %3 = affine.load %arg0[%arg2] : memref<32xf32>
    %4 = affine.load %arg1[%arg2] : memref<32xf32>
    %5 = addf %3, %4 : f32
    affine.store %5, %arg0[%arg2] : memref<32xf32>
  }
  return
}
```

This happened because when analyzing the source and destination nodes,
affine loop fusion ignored non-result ops sandwitched between them. In
other words, the MemRefDependencyGraph in the affine loop fusion ignored
these non-result ops.

This patch solves the issue by adding these non-result ops to the
MemRefDependencyGraph.

Reviewed By: bondhugula

Differential Revision: https://reviews.llvm.org/D95668
2021-02-06 13:30:16 +05:30
Diego Caballero c8fc5c0385 [mlir][Affine] Add support for multi-store producer fusion
This patch adds support for producer-consumer fusion scenarios with
multiple producer stores to the AffineLoopFusion pass. The patch
introduces some changes to the producer-consumer algorithm, including:

* For a given consumer loop, producer-consumer fusion iterates over its
producer candidates until a fixed point is reached.

* Producer candidates are gathered beforehand for each iteration of the
consumer loop and visited in reverse program order (not strictly guaranteed)
to maximize the number of loops fused per iteration.

In general, these changes were needed to simplify the multi-store producer
support and remove some of the workarounds that were introduced in the past
to support more fusion cases under the single-store producer limitation.

This patch also preserves the existing functionality of AffineLoopFusion with
one minor change in behavior. Producer-consumer fusion didn't fuse scenarios
with escaping memrefs and multiple outgoing edges (from a single store).
Multi-store producer scenarios will usually (always?) have multiple outgoing
edges so we couldn't fuse any with escaping memrefs, which would greatly limit
the applicability of this new feature. Therefore, the patch enables fusion for
these scenarios. Please, see modified tests for specific details.

Reviewed By: andydavis1, bondhugula

Differential Revision: https://reviews.llvm.org/D92876
2021-01-25 20:31:17 +02:00
Diego Caballero 735a07f047 Revert "[mlir][Affine] Add support for multi-store producer fusion"
This reverts commit 7dd198852b.

ASAN issue.
2021-01-21 00:37:23 +02:00
Jacques Pienaar cad16e4a92 Avoid unused variable warning in opt mode 2021-01-20 09:45:22 -08:00
Diego Caballero 7dd198852b [mlir][Affine] Add support for multi-store producer fusion
This patch adds support for producer-consumer fusion scenarios with
multiple producer stores to the AffineLoopFusion pass. The patch
introduces some changes to the producer-consumer algorithm, including:

* For a given consumer loop, producer-consumer fusion iterates over its
producer candidates until a fixed point is reached.

* Producer candidates are gathered beforehand for each iteration of the
consumer loop and visited in reverse program order (not strictly guaranteed)
to maximize the number of loops fused per iteration.

In general, these changes were needed to simplify the multi-store producer
support and remove some of the workarounds that were introduced in the past
to support more fusion cases under the single-store producer limitation.

This patch also preserves the existing functionality of AffineLoopFusion with
one minor change in behavior. Producer-consumer fusion didn't fuse scenarios
with escaping memrefs and multiple outgoing edges (from a single store).
Multi-store producer scenarios will usually (always?) have multiple outgoing
edges so we couldn't fuse any with escaping memrefs, which would greatly limit
the applicability of this new feature. Therefore, the patch enables fusion for
these scenarios. Please, see modified tests for specific details.

Reviewed By: andydavis1, bondhugula

Differential Revision: https://reviews.llvm.org/D92876
2021-01-20 19:03:07 +02:00
Christian Sigg c4a0405902 Add `Operation* OpState::operator->()` to provide more convenient access to members of Operation.
Given that OpState already implicit converts to Operator*, this seems reasonable.

The alternative would be to add more functions to OpState which forward to Operation.

Reviewed By: rriddle, ftynse

Differential Revision: https://reviews.llvm.org/D92266
2020-12-02 15:46:20 +01:00
Diego Caballero c1ba9c43ad [mlir][Affine] Refactor affine fusion code in pass to utilities
Refactoring/clean-up step needed to add support for producer-consumer fusion
with multi-store producer loops and, in general, to implement more general
loop fusion strategies in Affine. It introduces the following changes:
  - AffineLoopFusion pass now uses loop fusion utilities more broadly to compute
    fusion legality (canFuseLoops utility) and perform the fusion transformation
    (fuseLoops utility).
  - Loop fusion utilities have been extended to deal with AffineLoopFusion
    requirements and assumptions while preserving both loop fusion utilities and
    AffineLoopFusion current functionality within a unified implementation.
    'FusionStrategy' has been introduced for this purpose and, in the future, it
    will allow us to have a single loop fusion core implementation that will produce
    different fusion outputs depending on the strategy used.
  - Improve separation of concerns for legality and profitability analysis:
    'isFusionProfitable' no longer filters out illegal scenarios that 'canFuse'
    didn't detect, or the other way around. 'canFuse' now takes loop dependences
    into account to determine the fusion loop depth (producer-consumer fusion only).
  - As a result, maximal fusion now doesn't require any profitability analysis.
  - Slices are now computed only once and reused across the legality, profitability
    and fusion transformation steps (producer-consumer).
  - Refactor some utilities and remove redundant copies of them.

This patch is NFCI and should preserve the existing functionality of both the
AffineLoopFusion pass and the affine fusion utilities.

Reviewed By: andydavis1, bondhugula

Differential Revision: https://reviews.llvm.org/D90798
2020-11-18 13:50:32 -08:00
Diego Caballero 3bfbc5df87 [MLIR][Affine] Fix createPrivateMemRef in affine fusion
Always define a remapping for the memref replacement (`indexRemap`)
with the proper number of inputs, including all the `outerIVs`, so that
the number of inputs and the operands provided for the map don't mismatch.

Reviewed By: bondhugula, andydavis1

Differential Revision: https://reviews.llvm.org/D85177
2020-08-04 12:17:48 -07:00
Uday Bondhugula ec85d7c8f3 [MLIR][NFC] Fix clang tidy warnings in misc utilities
Fix clang tidy warnings in misc utilities - missing const or a star in
declaration.

Differential Revision: https://reviews.llvm.org/D83861
2020-07-16 00:27:30 +05:30
River Riddle 9db53a1827 [mlir][NFC] Remove usernames and google bug numbers from TODO comments.
These were largely leftover from when MLIR was a google project, and don't really follow LLVM guidelines.
2020-07-07 01:40:52 -07:00
Tung D. Le 2b5d1776ff [MLIR][Affine-loop-fusion] Fix a bug in affine-loop-fusion pass when there are non-affine operations
When there is a mix of affine load/store and non-affine operations (e.g. std.load, std.store),
affine-loop-fusion ignores the present of non-affine ops, thus changing the program semantics.

E.g. we have a program of three affine loops operating on the same memref in which one of them uses std.load and std.store, as follows.
```
affine.for
  affine.store %1
affine.for
  std.load %1
  std.store %1
affine.for
  affine.load %1
  affine.store %1
```
affine-loop-fusion will produce the following result which changed the program semantics:
```
affine.for
  std.load %1
  std.store %1
affine.for
  affine.store %1
  affine.load %1
  affine.store %1
```

This patch is to fix the above problem by checking non-affine users of the memref that are between the source and destination nodes of interest.

Differential Revision: https://reviews.llvm.org/D82158
2020-06-26 18:26:42 +05:30
Rahul Joshi d891d738d9 [MLIR][NFC] Adopt variadic isa<>
Differential Revision: https://reviews.llvm.org/D82489
2020-06-24 17:02:44 -07:00
Uday Bondhugula aec5344f48 [MLIR] Fix affine loop fusion private memref alloc
Drop stale code that provided the wrong operands to alloc.

Reported-by: rjnw on discourse

Differential Revision: https://reviews.llvm.org/D82409
2020-06-24 22:19:29 +05:30
Rahul Joshi 2eaadfc4fe [NFC] Use llvm::hasSingleElement() in place of .size() == 1
- Also use functions in Region instead of Region::getBlocks() where possible.

Differential Revision: https://reviews.llvm.org/D82032
2020-06-17 13:26:10 -07:00
Diego Caballero 2e7a084591 [mlir][Affine] Revisit fusion candidates after successful fusion
This patch changes the fusion algorithm so that after fusing two loop nests
we revisit previously visited nodes so that they are considered again for
fusion in the context of the new fused loop nest.

Reviewed By: bondhugula

Differential Revision: https://reviews.llvm.org/D81609
2020-06-11 14:53:08 -07:00
Diego Caballero a45fb1942f [mlir][Affine] Introduce affine memory interfaces
This patch introduces interfaces for read and write ops with affine
restrictions. I used `read`/`write` intead of `load`/`store` for the
interfaces so that they can also be implemented by dma ops.
For now, they are only implemented by affine.load, affine.store,
affine.vector_load and affine.vector_store.

For testing purposes, this patch also migrates affine loop fusion and
required analysis to use the new interfaces. No other changes are made
beyond that.

Co-authored-by: Alex Zinenko <zinenko@google.com>

Reviewed By: bondhugula, ftynse

Differential Revision: https://reviews.llvm.org/D79829
2020-05-19 17:32:50 -07:00
Uday Bondhugula 2affcd664e [MLIR] Fix affine fusion bug/efficiency issue / enable more fusion
The list of destination load ops while evaluating producer-consumer
fusion wasn't being maintained as a set, and as such, duplicate load ops
were being added to it. Although this is harmless correctness-wise, it's
a killer efficiency-wise and it prevents interesting/useful fusions
(including for eg. reshapes into a matmul). The reason the latter
fusions would be missed is that a slice union would be unnecessarily
needed due to the duplicate load ops on a memref added to the 'dst
loads' list. Since slice union is unimplemented for the local var case,
a single destination load op that leads to local vars (like a floordiv /
mod producing fusion), a common case, would not get fused due to an
unnecessary union being tried with itself.  (The union would actually be
the same thing but we would bail out.)

Besides the above, this would also significantly speed up fusion as all
the unnecessary slice computations / unions, checks, etc. due to the
duplicates go away.

Differential Revision: https://reviews.llvm.org/D79547
2020-05-07 10:51:34 +05:30
Uday Bondhugula ca09dab303 [MLIR][NFC] Fix/update debug messages for analysis utils and affine fusion
Drop trailing period in debug messages. Add an extra line for fusion
debug info.

Differential Revision: https://reviews.llvm.org/D79471
2020-05-06 12:27:59 +05:30
Jeremy Bruestle 9f3ab92ec8 [MLIR] Improve support for 0-dimensional Affine Maps.
Summary:
Modified AffineMap::get to remove support for the overload which allowed
an ArrayRef of AffineExpr but no context (and gathered the context from a
presumed first entry, resulting in bugs when there were 0 results).

Instead, we support only a ArrayRef and a context, and a version which
takes a single AffineExpr.

Additionally, removed some now needless case logic which previously
special cased which call to AffineMap::get to use.

Reviewers: flaub, bondhugula, rriddle!, nicolasvasilache, ftynse, ulysseB, mravishankar, antiagainst, aartbik

Subscribers: mehdi_amini, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, bader, grosul1, frgossen, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D78226
2020-04-15 14:15:02 -07:00
Uday Bondhugula 42ada5fee9 [MLIR] NFC cleanup/modernize memref-dataflow-opt / getNestingDepth
Bring code to date with recent changes to the core infrastructure /
coding style.

Differential Revision: https://reviews.llvm.org/D77998
2020-04-14 00:03:06 +05:30
River Riddle 400ad6f95d [mlir] Eliminate the remaining usages of cl::opt instead of PassOption.
Summary: Pass options are a better choice for various reasons and avoid the need for static constructors.

Differential Revision: https://reviews.llvm.org/D77707
2020-04-08 13:05:08 -07:00
River Riddle 1834ad4a69 [mlir][Pass] Update the PassGen to generate base classes instead of utilities
Summary:
This is much cleaner, and fits the same structure as many other tablegen backends. This was not done originally as the CRTP in the pass classes made it overly verbose/complex.

Differential Revision: https://reviews.llvm.org/D77367
2020-04-07 14:08:52 -07:00
River Riddle 80aca1eaf7 [mlir][Pass] Remove the use of CRTP from the Pass classes
This revision removes all of the CRTP from the pass hierarchy in preparation for using the tablegen backend instead. This creates a much cleaner interface in the C++ code, and naturally fits with the rest of the infrastructure. A new utility class, PassWrapper, is added to replicate the existing behavior for passes not suitable for using the tablegen backend.

Differential Revision: https://reviews.llvm.org/D77350
2020-04-07 14:08:52 -07:00
River Riddle 9a277af2d4 [mlir][Pass] Add support for generating pass utilities via tablegen
This revision adds support for generating utilities for passes such as options/statistics/etc. that can be inferred from the tablegen definition. This removes additional boilerplate from the pass, and also makes it easier to remove the reliance on the pass registry to provide certain things(e.g. the pass argument).

Differential Revision: https://reviews.llvm.org/D76659
2020-04-01 02:10:46 -07:00
River Riddle 8155e41ac6 [mlir][Pass] Add a tablegen backend for defining Pass information
This will greatly simplify a number of things related to passes:
* Enables generation of pass registration
* Enables generation of boiler plate pass utilities
* Enables generation of pass documentation

This revision focuses on adding the basic structure and adds support for generating the registration for passes in the Transforms/ directory. Future revisions will add more support and move more passes over.

Differential Revision: https://reviews.llvm.org/D76656
2020-04-01 02:10:46 -07:00
Rob Suderman e708471395 [mlir][NFC] Cleanup AffineOps directory structure
Summary:
Change AffineOps Dialect structure to better group both IR and Tranforms. This included extracting transforms directly related to AffineOps. Also move AffineOps to Affine.

Differential Revision: https://reviews.llvm.org/D76161
2020-03-20 14:23:43 -07:00
Rob Suderman 40f4a9fdaa [mlir][NFC] Removed unnecessary StandardOp includes
Summary: A number of transform import StandardOps despite not being dependent on it. Cleaned it up to better understand what dialects each of these transforms depend on.

Differential Revision: https://reviews.llvm.org/D76112
2020-03-12 18:31:09 -07:00
River Riddle de5a81b102 [mlir] Update several usages of IntegerType to properly handled unsignedness.
Summary: For example, DenseElementsAttr currently does not properly round-trip unsigned integer values.

Differential Revision: https://reviews.llvm.org/D75374
2020-03-02 09:19:26 -08:00
Rob Suderman 69d757c0e8 Move StandardOps/Ops.h to StandardOps/IR/Ops.h
Summary:
NFC - Moved StandardOps/Ops.h to a StandardOps/IR dir to better match surrounding
directories. This is to match other dialects, and prepare for moving StandardOps
related transforms in out for Transforms and into StandardOps/Transforms.

Differential Revision: https://reviews.llvm.org/D74940
2020-02-21 11:58:47 -08:00
Lei Zhang 35b685270b [mlir] Add a signedness semantics bit to IntegerType
Thus far IntegerType has been signless: a value of IntegerType does
not have a sign intrinsically and it's up to the specific operation
to decide how to interpret those bits. For example, std.addi does
two's complement arithmetic, and std.divis/std.diviu treats the first
bit as a sign.

This design choice was made some time ago when we did't have lots
of dialects and dialects were more rigid. Today we have much more
extensible infrastructure and different dialect may want different
modelling over integer signedness. So while we can say we want
signless integers in the standard dialect, we cannot dictate for
others. Requiring each dialect to model the signedness semantics
with another set of custom types is duplicating the functionality
everywhere, considering the fundamental role integer types play.

This CL extends the IntegerType with a signedness semantics bit.
This gives each dialect an option to opt in signedness semantics
if that's what they want and helps code sharing. The parser is
modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as
signed and unsigned integer types, respectively, leaving the
original `i[1-9][0-9]*` to continue to mean no indication over
signedness semantics. All existing dialects are not affected (yet)
as this is a feature to opt in.

More discussions can be found at:

https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ

Differential Revision: https://reviews.llvm.org/D72533
2020-02-21 09:16:54 -05:00
Mehdi Amini 308571074c Mass update the MLIR license header to mention "Part of the LLVM project"
This is an artifact from merging MLIR into LLVM, the file headers are
now aligned with the rest of the project.
2020-01-26 03:58:30 +00:00
Kazuaki Ishizaki fc817b09e2 [mlir] NFC: Fix trivial typos in comments
Differential Revision: https://reviews.llvm.org/D73012
2020-01-20 03:17:03 +00:00
River Riddle 2bdf33cc4c [mlir] NFC: Remove Value::operator* and Value::operator-> now that Value is properly value-typed.
Summary: These were temporary methods used to simplify the transition.

Reviewed By: antiagainst

Differential Revision: https://reviews.llvm.org/D72548
2020-01-11 08:54:39 -08:00
River Riddle e62a69561f NFC: Replace ValuePtr with Value and remove it now that Value is value-typed.
ValuePtr was a temporary typedef during the transition to a value-typed Value.

PiperOrigin-RevId: 286945714
2019-12-23 16:36:53 -08:00