pointer.
mwaitx uses EBX as one of its argument.
Using this instruction clobbers RBX as it is defined to hold one of the
input. When the backend uses dynamically allocated stack, RBX is used as
a reserved register for the base pointer.
This patch is adapted from @qcolombet patch for cmpxchg at r263325.
This fixes PR43528.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D73475
The documentation was missing a '*/' in '/*<2x32-bit> vadd {0, 64, VPR}',
and the example code are now aligned to improve readability.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D86201
When optimizing the table, PointerToAnyOperandMatchers would be
incorrectly reported as identical even though they have different
SizeInBits values. This bug was due to failing to overload the
isIdentical() method, which this patch addresses.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D86199
Intrinsic properties can now be set to default and applied to all
intrinsics. If the attributes are not needed, the user can opt-out by
setting the DisableDefaultAttributes flag to true.
Differential Revision: https://reviews.llvm.org/D70365
The switch in AArch64Operand::print was changed in D45688 so the shift
can be printed after printing the register. This is implemented with
LLVM_FALLTHROUGH and was broken in D52485 when BTIHint was put between
the register and shift operands.
Reviewed By: ostannard
Differential Revision: https://reviews.llvm.org/D86535
This fixes an issue where the restore point of callee-saves in the
function epilogues was incorrectly calculated when the basic block
consisted of only a RET instruction. This caused dealloc instructions
to be inserted in between the block of callee-save restore instructions,
rather than before it.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D86099
Currently `strace llvm-dwarfdump x.debug >/tmp/file`:
ioctl(1, TCGETS, 0x7ffd64d7f340) = -1 ENOTTY (Inappropriate ioctl for device)
write(1, " DW_AT_decl_line\t(89)\n"..., 4096) = 4096
ioctl(1, TCGETS, 0x7ffd64d7f400) = -1 ENOTTY (Inappropriate ioctl for device)
ioctl(1, TCGETS, 0x7ffd64d7f410) = -1 ENOTTY (Inappropriate ioctl for device)
ioctl(1, TCGETS, 0x7ffd64d7f400) = -1 ENOTTY (Inappropriate ioctl for device)
After this patch:
write(1, "0000000000001102 \"strlen\")\n "..., 4096) = 4096
write(1, "site\n DW_AT_low"..., 4096) = 4096
write(1, "d53)\n\n0x000e4d4d: DW_TAG_G"..., 4096) = 4096
The same speedup can be achieved by `--color=0` but that is not much convenient.
This implementation has been suggested by Joerg Sonnenberger.
Differential Revision: https://reviews.llvm.org/D86406
This test appears to have never worked on Linux but it seems none of the current
bots ever ran this test as it required enabling compiler-rt (otherwise it
would have just been skipped).
This just copies over the XFAIL decorator that are already on all other sanitizer
tests.
This patch produces an edge-based interface in AAIsDead.
By this, we can query a set of basic blocks that are directly reachable from a given basic block.
This is specifically useful for implementation of AAReachability.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D85547
* Generate `CallExpression` syntax node for all semantic nodes inheriting from
`CallExpr` with call-expression syntax - except `CUDAKernelCallExpr`.
* Implement all the accessors
* Arguments of `CallExpression` have their own syntax node which is based on
the `List` base API
Differential Revision: https://reviews.llvm.org/D86544
While since D86306 we do it's sibling fold for `insertvalue`,
we should also do this for `extractvalue`'s.
And unlike that one, the results here are, quite honestly, shocking,
as it can be observed here on vanilla llvm test-suite + RawSpeed results:
```
| statistic name | baseline | proposed | Δ | % | |%| |
|----------------------------------------------------|-----------|-----------|--------:|--------:|-------:|
| asm-printer.EmittedInsts | 7945095 | 7942507 | -2588 | -0.03% | 0.03% |
| assembler.ObjectBytes | 273209920 | 273069800 | -140120 | -0.05% | 0.05% |
| early-cse.NumCSE | 2183363 | 2183398 | 35 | 0.00% | 0.00% |
| early-cse.NumSimplify | 541847 | 550017 | 8170 | 1.51% | 1.51% |
| instcombine.NumAggregateReconstructionsSimplified | 2139 | 108 | -2031 | -94.95% | 94.95% |
| instcombine.NumCombined | 3601364 | 3635448 | 34084 | 0.95% | 0.95% |
| instcombine.NumConstProp | 27153 | 27157 | 4 | 0.01% | 0.01% |
| instcombine.NumDeadInst | 1694521 | 1765022 | 70501 | 4.16% | 4.16% |
| instcombine.NumPHIsOfExtractValues | 0 | 37546 | 37546 | 0.00% | 0.00% |
| instcombine.NumSunkInst | 63158 | 63686 | 528 | 0.84% | 0.84% |
| instcount.NumBrInst | 874304 | 871857 | -2447 | -0.28% | 0.28% |
| instcount.NumCallInst | 1757657 | 1758402 | 745 | 0.04% | 0.04% |
| instcount.NumExtractValueInst | 45623 | 11483 | -34140 | -74.83% | 74.83% |
| instcount.NumInsertValueInst | 4983 | 580 | -4403 | -88.36% | 88.36% |
| instcount.NumInvokeInst | 61018 | 59478 | -1540 | -2.52% | 2.52% |
| instcount.NumLandingPadInst | 35334 | 34215 | -1119 | -3.17% | 3.17% |
| instcount.NumPHIInst | 344428 | 331116 | -13312 | -3.86% | 3.86% |
| instcount.NumRetInst | 100773 | 100772 | -1 | 0.00% | 0.00% |
| instcount.TotalBlocks | 1081154 | 1077166 | -3988 | -0.37% | 0.37% |
| instcount.TotalFuncs | 101443 | 101442 | -1 | 0.00% | 0.00% |
| instcount.TotalInsts | 8890201 | 8833747 | -56454 | -0.64% | 0.64% |
| instsimplify.NumSimplified | 75822 | 75707 | -115 | -0.15% | 0.15% |
| simplifycfg.NumHoistCommonCode | 24203 | 24197 | -6 | -0.02% | 0.02% |
| simplifycfg.NumHoistCommonInstrs | 48201 | 48195 | -6 | -0.01% | 0.01% |
| simplifycfg.NumInvokes | 2785 | 4298 | 1513 | 54.33% | 54.33% |
| simplifycfg.NumSimpl | 997332 | 1018189 | 20857 | 2.09% | 2.09% |
| simplifycfg.NumSinkCommonCode | 7088 | 6464 | -624 | -8.80% | 8.80% |
| simplifycfg.NumSinkCommonInstrs | 15117 | 14021 | -1096 | -7.25% | 7.25% |
```
... which tells us that this new fold fires whopping 38k times,
increasing the amount of SimplifyCFG's `invoke`->`call` transforms by +54% (+1513) (again, D85787 did that last time),
decreasing total instruction count by -0.64% (-56454),
and sharply decreasing count of `insertvalue`'s (-88.36%, i.e. 9 times less)
and `extractvalue`'s (-74.83%, i.e. four times less).
This causes geomean -0.01% binary size decrease
http://llvm-compile-time-tracker.com/compare.php?from=4d5ca22b8adfb6643466e4e9f48ba14bb48938bc&to=97dacca0111cb2ae678204e52a3cee00e3a69208&stat=size-text
and, ignoring `O0-g`, is a geomean -0.01%..-0.05% compile-time improvement
http://llvm-compile-time-tracker.com/compare.php?from=4d5ca22b8adfb6643466e4e9f48ba14bb48938bc&to=97dacca0111cb2ae678204e52a3cee00e3a69208&stat=instructions
The other thing that tells is, is that while this is a massive win for `invoke`->`call` transform
`InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse()` fold,
which is supposed to be dealing with such aggregate reconstructions,
fires a lot less now. There are two reasons why:
1. After this fold, as it can be seen in tests, we may (will) end up with trivially redundant PHI nodes.
We don't CSE them in InstCombine presently, which means that EarlyCSE needs to run and then InstCombine rerun.
2. But then, EarlyCSE not only manages to fold such redundant PHI's,
it also sees that the extract-insert chain recreates the original aggregate,
and replaces it with the original aggregate.
The take-aways are
1. We maybe should do most trivial, same-BB PHI CSE in InstCombine
2. I need to check if what other patterns remain, and how they can be resolved.
(i.e. i wonder if `foldAggregateConstructionIntoAggregateReuse()` might go away)
This is a reland of the original commit fcb51d8c24,
because originally i forgot to ensure that the base aggregate types match.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D86530
This assertion does not achieve what it meant to do originally, as it
would fire only when applied to an unregistered operation, which is a
fairly rare circumstance (it needs a dialect or context allowing
unregistered operation in the input in the first place).
Instead we relax it to only fire when it should have matched but didn't
because of the misconfiguration.
Differential Revision: https://reviews.llvm.org/D86588
Update the comment stating the aim of the test - this is currently
only checking that these assembler directives doesn't cause the
assembler to fail, but the results of the testcase aren't particularly
correct yet.
Remove bits of the testcase that are even less likely to be found in
the wild (the .seh_startchained/.seh_endchained block), where the
testcase currently doesn't really generate anything interesting
anyway.
Differential Revision: https://reviews.llvm.org/D86524
Instead of using the TypeConverter infer the value of the alloca created based
on the init value. This will allow some ambiguous types like multidimensional
vectors to be converted correctly.
Differential Revision: https://reviews.llvm.org/D86582
This reverts commit fcb51d8c24.
As buildbots report, there's apparently some missing check to ensure
that the types of incoming values match the type of PHI.
Let's revert for a moment.
While since D86306 we do it's sibling fold for `insertvalue`,
we should also do this for `extractvalue`'s.
And unlike that one, the results here are, quite honestly, shocking,
as it can be observed here on vanilla llvm test-suite + RawSpeed results:
```
| statistic name | baseline | proposed | Δ | % | |%| |
|----------------------------------------------------|-----------|-----------|--------:|--------:|-------:|
| asm-printer.EmittedInsts | 7945095 | 7942507 | -2588 | -0.03% | 0.03% |
| assembler.ObjectBytes | 273209920 | 273069800 | -140120 | -0.05% | 0.05% |
| early-cse.NumCSE | 2183363 | 2183398 | 35 | 0.00% | 0.00% |
| early-cse.NumSimplify | 541847 | 550017 | 8170 | 1.51% | 1.51% |
| instcombine.NumAggregateReconstructionsSimplified | 2139 | 108 | -2031 | -94.95% | 94.95% |
| instcombine.NumCombined | 3601364 | 3635448 | 34084 | 0.95% | 0.95% |
| instcombine.NumConstProp | 27153 | 27157 | 4 | 0.01% | 0.01% |
| instcombine.NumDeadInst | 1694521 | 1765022 | 70501 | 4.16% | 4.16% |
| instcombine.NumPHIsOfExtractValues | 0 | 37546 | 37546 | 0.00% | 0.00% |
| instcombine.NumSunkInst | 63158 | 63686 | 528 | 0.84% | 0.84% |
| instcount.NumBrInst | 874304 | 871857 | -2447 | -0.28% | 0.28% |
| instcount.NumCallInst | 1757657 | 1758402 | 745 | 0.04% | 0.04% |
| instcount.NumExtractValueInst | 45623 | 11483 | -34140 | -74.83% | 74.83% |
| instcount.NumInsertValueInst | 4983 | 580 | -4403 | -88.36% | 88.36% |
| instcount.NumInvokeInst | 61018 | 59478 | -1540 | -2.52% | 2.52% |
| instcount.NumLandingPadInst | 35334 | 34215 | -1119 | -3.17% | 3.17% |
| instcount.NumPHIInst | 344428 | 331116 | -13312 | -3.86% | 3.86% |
| instcount.NumRetInst | 100773 | 100772 | -1 | 0.00% | 0.00% |
| instcount.TotalBlocks | 1081154 | 1077166 | -3988 | -0.37% | 0.37% |
| instcount.TotalFuncs | 101443 | 101442 | -1 | 0.00% | 0.00% |
| instcount.TotalInsts | 8890201 | 8833747 | -56454 | -0.64% | 0.64% |
| instsimplify.NumSimplified | 75822 | 75707 | -115 | -0.15% | 0.15% |
| simplifycfg.NumHoistCommonCode | 24203 | 24197 | -6 | -0.02% | 0.02% |
| simplifycfg.NumHoistCommonInstrs | 48201 | 48195 | -6 | -0.01% | 0.01% |
| simplifycfg.NumInvokes | 2785 | 4298 | 1513 | 54.33% | 54.33% |
| simplifycfg.NumSimpl | 997332 | 1018189 | 20857 | 2.09% | 2.09% |
| simplifycfg.NumSinkCommonCode | 7088 | 6464 | -624 | -8.80% | 8.80% |
| simplifycfg.NumSinkCommonInstrs | 15117 | 14021 | -1096 | -7.25% | 7.25% |
```
... which tells us that this new fold fires whopping 38k times,
increasing the amount of SimplifyCFG's `invoke`->`call` transforms by +54% (+1513) (again, D85787 did that last time),
decreasing total instruction count by -0.64% (-56454),
and sharply decreasing count of `insertvalue`'s (-88.36%, i.e. 9 times less)
and `extractvalue`'s (-74.83%, i.e. four times less).
This causes geomean -0.01% binary size decrease
http://llvm-compile-time-tracker.com/compare.php?from=4d5ca22b8adfb6643466e4e9f48ba14bb48938bc&to=97dacca0111cb2ae678204e52a3cee00e3a69208&stat=size-text
and, ignoring `O0-g`, is a geomean -0.01%..-0.05% compile-time improvement
http://llvm-compile-time-tracker.com/compare.php?from=4d5ca22b8adfb6643466e4e9f48ba14bb48938bc&to=97dacca0111cb2ae678204e52a3cee00e3a69208&stat=instructions
The other thing that tells is, is that while this is a massive win for `invoke`->`call` transform
`InstCombinerImpl::foldAggregateConstructionIntoAggregateReuse()` fold,
which is supposed to be dealing with such aggregate reconstructions,
fires a lot less now. There are two reasons why:
1. After this fold, as it can be seen in tests, we may (will) end up with trivially redundant PHI nodes.
We don't CSE them in InstCombine presently, which means that EarlyCSE needs to run and then InstCombine rerun.
2. But then, EarlyCSE not only manages to fold such redundant PHI's,
it also sees that the extract-insert chain recreates the original aggregate,
and replaces it with the original aggregate.
The take-aways are
1. We maybe should do most trivial, same-BB PHI CSE in InstCombine
2. I need to check if what other patterns remain, and how they can be resolved.
(i.e. i wonder if `foldAggregateConstructionIntoAggregateReuse()` might go away)
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D86530
This happens when using -flto and -Wl,--plugin-opt=emit-llvm to create a linked LTO bitcode file, and the bitcode file has a strtab with size > 2^29.
All the issues relate to a pattern like this
size_t x64 = y64 + z32 * C
When z32 is >= (2^32)/C, z32 * C overflows.
Reviewed-by: MaskRay
Differential Revision: https://reviews.llvm.org/D86500
Tests for frexp[f|l] now use the new capability. Not all input-output
combinations have been addressed by this change. Support for newer combinations
can be added in future as needed.
Reviewed By: lntue
Differential Revision: https://reviews.llvm.org/D86506
A Mach-O universal binary may contain bitcode as a slice.
This diff adds proper handling of such binaries to llvm-lipo.
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D85740
Update the "image show-unwind" command output to show if the function
being shown is listed as a user-setting or platform trap handler.
Update the individual UnwindPlan dumps to show whether the unwind plan
is registered as a trap handler.
Since we can only copy to GR32 we had to EXTRACT from GR32, but
we would first go to GR16 and then the truncate would extra again
to GR8. This adds a special case to go directly from GR32 to GR8.
This would eventually get cleaned up, but though maybe we should
avoid doing it in the first place. Our k-register handling is weird
and we could probably stand to have some more special ISD nodes
for the conversions so the i32 type would be explicit.
Before the change the diagnostic for
module unknown.submodule {}
was "error: expected module name" which is incorrect and misleading
because both "unknown" and "submodule" are valid module names.
We already have a better error message when a parent module is a
submodule itself and is missing. Make the error for a missing top-level
module more like the one for a submodule.
rdar://problem/64424407
Reviewed By: bruno
Differential Revision: https://reviews.llvm.org/D84458
The IsExtractedElement already called getOperand(0) so Extract
here is the source vector. We shouldn't call getOperand(0). This
worked for the original test cases because the result was a
bitcast so the getOperand(0) accidently peeked through the bitcast
which is what we wanted.
In the failing case here, the operand turns out to be undef so
the getOperand(0) asserts because undef has no operands.
Fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=25184
Differential Revision: https://reviews.llvm.org/D86428
KMOVWkr produces VK16, there's no reason to copy it to VK16 again.
Test changes are presumably because we were scheduling based on
the COPY that is no longer there.
Remove `SetObjectModificationTime` which is not currently used, and assigns to the wrong member.
Differential Revision: https://reviews.llvm.org/D86493
We only need the C++ type and the corresponding TF Enum. The other
parameter was used for the output spec json file, but we can just
standardize on the C++ type name there.
Differential Revision: https://reviews.llvm.org/D86549
There are two ways .llvmbc can be produced:
* clang -c -fembed-bitcode=all (which also produces .llvmcmd)
* LTO backend: ld.lld -mllvm -lto-embed-bitcode or -plugin-opt=-lto-embed-bitcode
.llvmbc and .llvmcmd have the SHF_ALLOC flag, so they can be dropped by
--gc-sections.
This patch sets SectionKind::Metadata to drop the SHF_ALLOC flag. This
is conceptually correct: the two sections are not part of the process
image, so SHF_ALLOC is not appropriate.
`test/LTO/X86/embed-bitcode.ll`: changed `llvm-objcopy -O binary --only-section` to
`llvm-objcopy --dump-section`. `-O binary` does not dump non-SHF_ALLOC sections.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D86374