the trap BB out of the individual checks and into a common function, to prepare
for making this code call into a runtime library. Rename the existing EmitCheck
to EmitTypeCheck to clarify it and to move it out of the way of the new
EmitCheck.
llvm-svn: 163451
ObjCSelfInitChecker stashes information in the GDM to persist it across
function calls; it is stored in pre-call checks and retrieved post-call.
The post-call check is supposed to clear out the stored state, but was
failing to do so in cases where the call did not have a symbolic return
value.
This was actually causing the inappropriate cache-out from r163361.
Per discussion with Anna, we should never actually cache out when
assuming the receiver of an Objective-C message is non-nil, because
we guarded that node generation by checking that the state has changed.
Therefore, the only states that could reach this exact ExplodedNode are
ones that should have merged /before/ making this assumption.
r163361 has been reverted and the test case removed, since it won't
actually test anything interesting now.
llvm-svn: 163449
Previously, we'd just keep constraints around forever, which means we'd
never be able to merge paths that differed only in constraints on dead
symbols.
Because we now allow constraints on symbolic expressions, not just single
symbols, this requires changing SymExpr::symbol_iterator to include
intermediate symbol nodes in its traversal, not just the SymbolData leaf
nodes.
llvm-svn: 163444
RegionStoreManager was only treating a SymbolicRegion's symbel as live
if there was a binding referring to the region itself.
No test case because constraints are currently not being cleaned out
of the constraint manager at all (even if the symbol is legitimately dead).
llvm-svn: 163443
This is necessary because further analysis will assume that the SVal's
type matches the AST type. This caused a crash when trying to perform
a derived-to-base cast on a C++ object that had been new'd to be another
object type.
Yet another crash in PR13763.
llvm-svn: 163442
in classes. Use it to flag those method implementations which don't
contain call to 'super' if they have 'super' class and it has the method
with this attribute set. This is wip. // rdar://6386358
llvm-svn: 163434
objc_retainAutoreleasedReturnValue, we need to also be killing
them during return peepholing. Make sure we recognize an
intervening bitcast, but more importantly, assert if we can't
find the asm marker at all. rdar://problem/12133032
llvm-svn: 163431
with at least one subtle bug in MacOSXKeyChainAPIChecker where the
calling the method was a substitute for assuming a symbolic value
was null (which is not the case).
We still keep ConstraintManager::getSymVal(), but we use that as
an optimization in SValBuilder and ProgramState::getSVal() to
constant-fold SVals. This is only if the ConstraintManager can
provide us with that information, which is no longer a requirement.
As part of this, introduce a default implementation of
ConstraintManager::getSymVal() which returns null.
For Checkers, introduce ConstraintManager::isNull(), which queries
the state to see if the symbolic value is constrained to be a null
value. It does this without assuming it has been implicitly constant
folded.
llvm-svn: 163428
When adding the next statement to the CoreEngine's work list, we take care
of all the special cases first. We certainly shouldn't be building
PostStmts with null statements (the diagnostics machinery assumes such
StmtPoints do not exist), and we should find out sooner if we're missing
a special case.
A refinement of r163402 that should help prevent further issues like PR13760.
llvm-svn: 163409
GCC destroys temporary objects more aggressively than clang, so this
results in incorrect behavior when compiling GCC Release builds.
We could avoid this issue under C++11 by preventing getAs from being
called when 'this' is an rvalue:
template<class ElemTy> const ElemTy *getAs() const & { ... }
template<class ElemTy> const ElemTy *getAs() const && = delete;
Unfortunately, we do not have compatibility macros for this behavior yet.
This will hopefully fix PR13760 and PR13762.
llvm-svn: 163402
class itself. This caused some confusion (intuitively, a class is not
derived from itself) and makes it hard to write certain matchers, e.g.
"match and bind any pair of base and subclass".
The original behavior can be achieved with a new isA-matcher. Similar
to all other matchers, this matcher has the same behavior and name as
the corresponding AST-entity - in this case the isa<>() function.
llvm-svn: 163385
Implements the hasAncestor matcher. This builds
on the previous patch that introduced DynTypedNode to build up
a parent map for an additional degree of freedom in the AST traversal.
The map is only built once we hit an hasAncestor matcher, in order
to not slow down matching for cases where this is not needed.
We could implement some speed-ups for special cases, like building up
the parent map as we go and only building up the full map if we break
out of the already visited part of the tree, but that is probably
not going to be worth it, and would make the code significantly more
complex.
Major TODOs are:
- implement hasParent
- implement type traversal
- implement memoization in hasAncestor
llvm-svn: 163382
While the check itself should count 0-based for the parameter index,
the diagnostic should be 1-based (first, second, third, not start at 0).
Fixes <rdar://problem/12249569>.
llvm-svn: 163375
(as this previously was the case before this was refactored). We also shouldn't
need to specially handle BinaryOperators since the eagerly-assume heuristic tags
such nodes.
llvm-svn: 163374
implicit pointer-to-boolean conversions in condition expressions. This would
result in inconsistent diagnostic emission between C and C++.
A consequence of this is now ConditionBRVisitor and TrackConstraintBRVisitor may
emit redundant diagnostics, for example:
"Assuming pointer value is null" (TrackConstraintBRVisitor)
"Assuming 'p' is null" (ConditionBRVisitor)
We need to reconcile the two, and perhaps prefer one over the other in some
cases.
llvm-svn: 163372
unexpanded parameter pack is a pack expansion. Thus, as with a non-type template
parameter which is a pack expansion, it needs to be expanded early into a fixed
list of template parameters.
Since the expanded list of template parameters is not itself a parameter pack,
it is permitted to appear before the end of the template parameter list, so also
remove that restriction (for both template template parameter pack expansions and
non-type template parameter pack expansions).
llvm-svn: 163369
With some particularly evil casts, we can get an object whose dynamic type
is not actually a subclass of its static type. In this case, we won't even
find the statically-resolved method as a devirtualization candidate.
Rather than assert that this situation cannot occur, we now simply check
that the dynamic type is not an ancestor or descendent of the static type,
and leave it at that.
This error actually occurred analyzing LLVM: CallEventManager uses a
BumpPtrAllocator to allocate a concrete subclass of CallEvent
(FunctionCall), but then casts it to the actual subclass requested
(such as ObjCMethodCall) to perform the constructor.
Yet another crash in PR13763.
llvm-svn: 163367
A bizarre series of coincidences led us to generate a previously-seen
node in the middle of processing an Objective-C message, where we assume
the receiver is non-nil. We were assuming that such an assumption would
never "cache out" like this, and blithely went on using a null ExplodedNode
as the predecessor for the next step in evaluation.
Although the test case committed here is complicated, this could in theory
happen in other ways as well, so the correct fix is just to test if the
non-nil assumption results in an ExplodedNode we've seen before.
<rdar://problem/12243648>
llvm-svn: 163361
are used in EH code. Right now the CFG doesn't support exceptions well,
so we need this hack to avoid bogus dead store warnings.
Fixes <rdar://problem/12147586>
llvm-svn: 163353
CXXDestructorCall now has a flag for when it is a base destructor call.
Other kinds of destructor calls (locals, fields, temporaries, and 'delete')
all behave as "whole-object" destructors and do not behave differently
from one another (specifically, in these cases we /should/ try to
devirtualize a call to a virtual destructor).
This was causing crashes in both our internal buildbot, the crash still
being tracked in PR13765, and some of the crashes being tracked in PR13763,
due to a assertion failure. (The behavior under -Asserts happened to be
correct anyway.)
Adding this knowledge also allows our DynamicTypePropagation checker to do
a bit less work; the special rules about virtual method calls during a
destructor only require extra handling during base destructors.
llvm-svn: 163348
This patch uses a new ABIInfo implementation specific to the le32
target, rather than falling back to DefaultABIInfo. Its behavior is
basically the same, but it also allows the regparm argument attribute.
It also includes basic tests for argument codegen and attributes.
llvm-svn: 163333