Moved the guts of the code from CommandObjectBreakpoint to Target (should
have done it that way in the first place.) Added an SBBreakpointList class
so there's a way to specify which breakpoints to serialize and to report the
deserialized breakpoints.
<rdar://problem/12611863>
llvm-svn: 281520
Plumb unique_ptrs<> all the way through the baton interface.
NFC, this is a minor improvement to remove the possibility of an
accidental pointer ownership issue.
Reviewed By: jingham
Differential Revision: https://reviews.llvm.org/D24495
llvm-svn: 281360
Summary:
- Added an API to public interface that provides permissions (RWX) of
individual sections of an object file
- Earlier, there was no way to find out this information through SB
APIs
- A possible use case of this API is:
when a user wants to know the sections that have executable machine
instructions and want to write a tool on top of LLDB based on this
information
- Differential Revision: https://reviews.llvm.org/D24251
llvm-svn: 280924
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
Take 2, with missing cmake line fixed. Build tested on
Ubuntu 14.04 with clang-3.6.
See docs/structured_data/StructuredDataPlugins.md for details.
differential review: https://reviews.llvm.org/D22976
reviewers: clayborg, jingham
llvm-svn: 279202
Summary: Cmake 2.8 support is gone and not coming back. We can remove a bit of legacy code now.
Reviewers: zturner
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D23554
llvm-svn: 278924
It's always hard to remember when to include this file, and
when you do include it it's hard to remember what preprocessor
check it needs to be behind, and then you further have to remember
whether it's windows.h or win32.h which you need to include.
This patch changes the name to PosixApi.h, which is more appropriately
named, and makes it independent of any preprocessor setting.
There's still the issue of people not knowing when to include this,
because there's not a well-defined set of things it exposes other
than "whatever is missing on Windows", but at least this should
make it less painful to fix when problems arise.
This patch depends on LLVM revision r278170.
llvm-svn: 278177
This introduces basic support for debugging OCaml binaries.
Use of the native compiler with DWARF emission support (see
https://github.com/ocaml/ocaml/pull/574) is required.
Available variables are considered as 64 bits unsigned integers,
their interpretation will be left to a OCaml-made debugging layer.
Differential revision: https://reviews.llvm.org/D22132
llvm-svn: 277443
Summary:
- Modified code that enables writing new user-defined commands
and use them through LLDB CLI. Modifications are:
-- Define the 'syntax' for each user-defined command
--- Added an argument in SBCommandInterpreter::AddCommand()
and SBCommand::AddCommand() API
--- Allow passing syntax for each user-defined command
--- Earlier, only 'help' could be defined and passed for commands
-- Passed 'number of arguments' entered on CLI for user-defined commands
--- Added an argument (number of options) in SBCommandPluginInterface::DoExecute()
API to know the number of arguments passed for commands
-- In CommandPluginInterfaceImplementation class:
--- Make the data member m_backend a shared_ptr
--- Avoids memory leaks of dynamically allocated SBCommandPluginInterface instances
created in lldb::PluginInitialize() API
Signed-off-by: Abhishek Aggarwal <abhishek.a.aggarwal@intel.com>
Reviewers: jingham, granata.enrico, clayborg
Subscribers: labath, lldb-commits
Differential Revision: https://reviews.llvm.org/D22863
llvm-svn: 277125
This finally removes the use of the Mutex and Condition classes. This is an
intricate patch as the Mutex and Condition classes were tied together.
Furthermore, many places had slightly differing uses of time values. Convert
timeout values to relative everywhere to permit the use of
std::chrono::duration, which is required for the use of
std::condition_variable's timeout. Adjust all Condition and related Mutex
classes over to std::{,recursive_}mutex and std::condition_variable.
This change primarily comes at the cost of breaking the TracingMutex which was
based around the Mutex class. It would be possible to write a wrapper to
provide similar functionality, but that is beyond the scope of this change.
llvm-svn: 277011
"Incorrect" file name seen on Android whene the main executable is
called "app_process32" (or 64) but the linker specifies the package
name (e.g. com.android.calculator2). Additionally it can be present
in case of some linker bugs.
This CL adds logic to try to fetch the correct file name from the proc
file system based on the base address sepcified by the linker in case
we are failed to load the module by name.
Differential revision: http://reviews.llvm.org/D22219
llvm-svn: 276411
for the fall (northern hemisphere) 2016 Darwin platforms to learn
about loaded images, instead of reading dyld internal data structures.
These new SPI don't exist on older releases, and new packets are
needed from debugserver to use them (those changes are already committed).
I had to change the minimum deployment target for debugserver in the xcode
project file to macOS 10.10 so that debugserver will use the
[[NSProcessInfo processInfo] operatingSystemVersion]
call in MachProcess::GetOSVersionNumbers to get the operarting system
version # -- this API is only available in macOS 10.10 and newer
("OS X Yosemite", released Oct 2014). If we have many people building
llvm.org lldb on older systems still, we can back off on this for the
llvm.org sources.
There should be no change in behavior with this commit, either to
older darwin systems or newer darwin systems.
For now the new DynamicLoader plugin is never activated - I'm forcing
the old plugin to be used in DynamicLoaderDarwin::UseDYLDSPI.
I'll remove that unconditional use of the old plugin soon, so the
newer plugin is used on the newest Darwin platforms.
<rdar://problem/25251243>
llvm-svn: 276254
Summary:
This patch fills in the implementation of GetMemoryRegions() on the Linux and Mac OS core file implementations of lldb_private::Process (ProcessElfCore::GetMemoryRegions and ProcessMachCore::GetMemoryRegions.) The GetMemoryRegions API was added under: http://reviews.llvm.org/D20565
The patch re-uses the m_core_range_infos list that was recently added to implement GetMemoryRegionInfo in both ProcessElfCore and ProcessMachCore to ensure the returned regions match the regions returned by Process::GetMemoryRegionInfo(addr_t load_addr, MemoryRegionInfo ®ion_info).
Reviewers: clayborg
Subscribers: labath, lldb-commits
Differential Revision: http://reviews.llvm.org/D21751
llvm-svn: 274741
- if a synthetic child comes from the same hierarchy as its parent object, then it can't be cached by SharedPointer inside the synthetic provider, or it will cause a reference loop;
- but, if a synthetic child is made from whole cloth (e.g. from an expression, a memory region, ...), then it better be cached by SharedPointer, or it will be cleared out and cause an assert() to fail if used at a later point
For most cases of self-rooted synthetic children, we have a flag we set "IsSyntheticChildrenGenerated", but we were not using it to track caching. So, what ended up happening is each provider would set up its own cache, and if it got it wrong, a hard to diagnose crash would ensue
This patch fixes that by centralizing caching in ValueObjectSynthetic - if a provider returns a self-rooted child (as per the flag), then it gets cached centrally by the ValueObject itself
This cache is used only for lifetime management and not later retrieval of child values - a different cache handles that (because we might have a mix of self-rooted and properly nested child values for the same parent, we can't trivially use this lifetime cache for retrieval)
Fixes rdar://26480007
llvm-svn: 274683
We had support that assumed that thread local data for a variable could be determined solely from the module in which the variable exists. While this work for linux, it doesn't work for Apple OSs. The DWARF for thread local variables consists of location opcodes that do something like:
DW_OP_const8u (x)
DW_OP_form_tls_address
or
DW_OP_const8u (x)
DW_OP_GNU_push_tls_address
The "x" is allowed to be anything that is needed to determine the location of the variable. For Linux "x" is the offset within the TLS data for a given executable (ModuleSP in LLDB). For Apple OS variants, it is the file address of the data structure that contains a pthread key that can be used with pthread_getspecific() and the offset needed.
This fix passes the "x" along to the thread:
virtual lldb::addr_t
lldb_private::Thread::GetThreadLocalData(const lldb::ModuleSP module, lldb::addr_t tls_file_addr);
Then this is passed along to the DynamicLoader::GetThreadLocalData():
virtual lldb::addr_t
lldb_private::DynamicLoader::GetThreadLocalData(const lldb::ModuleSP module, const lldb::ThreadSP thread, lldb::addr_t tls_file_addr);
This allows each DynamicLoader plug-in do the right thing for the current OS.
The DynamicLoaderMacOSXDYLD was modified to be able to grab the pthread key from the data structure that is in memory and call "void *pthread_getspecific(pthread_key_t key)" to get the value of the thread local storage and it caches it per thread since it never changes.
I had to update the test case to access the thread local data before trying to print it as on Apple OS variants, thread locals are not available unless they have been accessed at least one by the current thread.
I also added a new lldb::ValueType named "eValueTypeVariableThreadLocal" so that we can ask SBValue objects for their ValueType and be able to tell when we have a thread local variable.
<rdar://problem/23308080>
llvm-svn: 274366
Summary:
This removes the last usage of Platform plugins in lldb-server -- it was used for launching child
processes, where it can be trivially replaced by Host::LaunchProces (as lldb-server is always
running on the host).
Removing platform plugins enables us to remove a lot of other unused code, which was pulled in as
a transitive dependency, and it reduces lldb-server size by 4%--9% (depending on build type and
architecture).
Reviewers: clayborg
Subscribers: tberghammer, danalbert, srhines, lldb-commits
Differential Revision: http://reviews.llvm.org/D20440
llvm-svn: 274125
Summary:
This adds new SB API calls and classes to allow a user of the SB API to obtain a full list of memory regions accessible within the process. Adding this to the API makes it possible use the API for tasks like scanning memory for blocks allocated with a header and footer to track down memory leaks, otherwise just inspecting every address is impractical especially for 64 bit processes.
These changes only add the API itself and a base implementation of GetMemoryRegions() to lldb_private::Process::GetMemoryRegions.
I will submit separate patches to fill in lldb_private::Process::GetMemoryRegionInfoList and GetMemoryRegionInfo for individual platforms.
The original discussion about this is here:
http://lists.llvm.org/pipermail/lldb-dev/2016-May/010203.html
Reviewers: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D20565
llvm-svn: 273547
For some reason, the conversion to taking the target lock when acquiring
the ExecutionContext was only done for some of the functions here. That was
allowing lock inversion in some complex uses.
<rdar://problem/26705635>
llvm-svn: 272354
Rules are as follows for internal code using lldb::DisassemblerSP and lldb::InstructionSP:
1 - The disassembler needs to stay around as long as instructions do as the Instruction subclass now has a weak pointer to the disassembler
2 - The public API has been fixed so that if you get a SBInstruction, it will hold onto a strong reference to the disassembler in a new InstructionImpl class
This will keep code like like:
inst = lldb.target.ReadInstructions(frame.GetPCAddress(), 1).GetInstructionAtIndex(0)
inst.GetMnemonic()
Working as expected (not the SBInstructionList() that was returned by SBTarget.ReadInstructions() is gone, but "inst" has a strong reference inside of it to the disassembler and the instruction.
All code inside the LLDB shared library was verified to correctly hold onto the disassembler instance in all places.
<rdar://problem/24585496>
llvm-svn: 272069
uint32_t SBProcess::GetNumQueues();
SBQueue SBProcess::GetQueueAtIndex (size_t index);
Otherwise this code will run when the process is running and cause problems.
<rdar://problem/26482744>
llvm-svn: 270803
This is a pretty straightforward first pass over removing a number of uses of
Mutex in favor of std::mutex or std::recursive_mutex. The problem is that there
are interfaces which take Mutex::Locker & to lock internal locks. This patch
cleans up most of the easy cases. The only non-trivial change is in
CommandObjectTarget.cpp where a Mutex::Locker was split into two.
llvm-svn: 269877
The IsValid calls can try to reconstruct the thread & frame, which can
take various internal locks. This can cause A/B locking issues with
the Target lock, so these calls need to that the Target lock.
llvm-svn: 268828
within a source file.
This isn't done, I need to make the name match smarter (right now it requires an
exact match which is annoying for methods of a class in a namespace.
Also, though we use it in tests all over the place, it doesn't look like we have
a test for Source Regexp breakpoints by themselves, I'll add that in a follow-on patch.
llvm-svn: 267834
Conditionalise a variable definition which may be unused in certain compilations
due to the preprocessor. Protect the variable accordingly. NFC.
llvm-svn: 267247
This patch adds support for Linux on SystemZ:
- A new ArchSpec value of eCore_s390x_generic
- A new directory Plugins/ABI/SysV-s390x providing an ABI implementation
- Register context support
- Native Linux support including watchpoint support
- ELF core file support
- Misc. support throughout the code base (e.g. breakpoint opcodes)
- Test case updates to support the platform
This should provide complete support for debugging the SystemZ platform.
Not yet supported are optional features like transaction support (zEC12)
or SIMD vector support (z13).
There is no instruction emulation, since our ABI requires that all code
provide correct DWARF CFI at all PC locations in .eh_frame to support
unwinding (i.e. -fasynchronous-unwind-tables is on by default).
The implementation follows existing platforms in a mostly straightforward
manner. A couple of things that are different:
- We do not use PTRACE_PEEKUSER / PTRACE_POKEUSER to access single registers,
since some registers (access register) reside at offsets in the user area
that are multiples of 4, but the PTRACE_PEEKUSER interface only allows
accessing aligned 8-byte blocks in the user area. Instead, we use a s390
specific ptrace interface PTRACE_PEEKUSR_AREA / PTRACE_POKEUSR_AREA that
allows accessing a whole block of the user area in one go, so in effect
allowing to treat parts of the user area as register sets.
- SystemZ hardware does not provide any means to implement read watchpoints,
only write watchpoints. In fact, we can only support a *single* write
watchpoint (but this can span a range of arbitrary size). In LLDB this
means we support only a single watchpoint. I've set all test cases that
require read watchpoints (or multiple watchpoints) to expected failure
on the platform. [ Note that there were two test cases that install
a read/write watchpoint even though they nowhere rely on the "read"
property. I've changed those to simply use plain write watchpoints. ]
Differential Revision: http://reviews.llvm.org/D18978
llvm-svn: 266308
Summary: These are not needed by lldb-server. Removing them shrinks the server by about 0.5%.
Reviewers: zturner
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D18206
llvm-svn: 264735
Top-level Clang expressions are expressions that act as new translation units,
and define their own symbols. They do not have function wrappers like regular
expressions do, and declarations are persistent regardless of use of the dollar
sign in identifiers. Names defined by these are given priority over all other
symbol lookups.
This patch adds a new expression option, '-p' or '--top-level,' which controls
whether the expression is treated this way. It also adds a flag controlling
this to SBExpressionOptions so that this API is usable externally. It also adds
a test that validates that this works. (The test requires a fix to the Clang
AST importer which I will be committing shortly.)
<rdar://problem/22864976>
llvm-svn: 264662
Summary:
This fixes a leak introduced by some of these changes:
r257644
r250530
r250525
The changes made in these patches result in leaking the FILE* passed
to SetImmediateOutputFile. GetStream() will dup() the fd held by the
python caller and create a new FILE*. It will then pass this FILE*
to SetImmediateOutputFile, which always uses the flag
transfer_ownership=false when it creates a File from the FILE*.
Since transfer_ownership is false, the lldb File destructor will not
close the underlying FILE*. Because this FILE* came from a dup-ed fd,
it will also not be closed when the python caller closes its file.
Leaking the FILE* causes issues if the same file is used multiple times
by different python callers during the same lldb run, even if these
callers open and close the python file properly, as you can end up
with issues due to multiple buffered writes to the same file.
Reviewers: granata.enrico, zturner, clayborg
Subscribers: zturner, lldb-commits, sas
Differential Revision: http://reviews.llvm.org/D18459
Change by Francis Ricci <fjricci@fb.com>
llvm-svn: 264476
This feature is controlled by an expression command option, a target property and the
SBExpressionOptions setting. FixIt's are only applied to UserExpressions, not UtilityFunctions,
those you have to get right when you make them.
This is just a first stage. At present the fixits are applied silently. The next step
is to tell the user about the applied fixit.
<rdar://problem/25351938>
llvm-svn: 264379
This patch adds ThreadSanitizer support into LLDB:
- Adding a new InstrumentationRuntime plugin, ThreadSanitizerRuntime, in the same way ASan is implemented.
- A breakpoint stops in `__tsan_on_report`, then we extract all sorts of information by evaluating an expression. We then populate this into StopReasonExtendedInfo.
- SBThread gets a new API, SBThread::GetStopReasonExtendedBacktraces(), which returns TSan’s backtraces in the form of regular SBThreads. Non-TSan stop reasons return an empty collection.
- Added some test cases.
Reviewed by Greg Clayton.
llvm-svn: 264162
Summary: These are not needed in lldb-server. Removing them shrinks the server size by about 1.5%.
Reviewers: zturner
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D18188
llvm-svn: 263625