incorrect, as the chosen representative of the weak symbol may not live
with the code in question. Always indirect the access through the TOC
instead.
Patch by Kyle Butt!
llvm-svn: 253708
This commit removes the global manager variable which is responsible for
storing and allocating pseudo source values and instead it introduces a new
manager class named 'PseudoSourceValueManager'. Machine functions now own an
instance of the pseudo source value manager class.
This commit also modifies the 'get...' methods in the 'MachinePointerInfo'
class to construct pseudo source values using the instance of the pseudo
source value manager object from the machine function.
This commit updates calls to the 'get...' methods from the 'MachinePointerInfo'
class in a lot of different files because those calls now need to pass in a
reference to a machine function to those methods.
This change will make it easier to serialize pseudo source values as it will
enable me to transform the mips specific MipsCallEntry PseudoSourceValue
subclass into two target independent subclasses.
Reviewers: Akira Hatanaka
llvm-svn: 244693
After r244074, we now have a successors() method to iterate over
all the successors of a TerminatorInst. This commit changes a bunch
of eligible loops to use it.
llvm-svn: 244260
extension property we're requesting - zero or sign extended.
This fixes cases where we want to return a zero extended 32-bit -1
and not be sign extended for the entire register. Also updated the
already out of date comment with the current behavior.
llvm-svn: 243192
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, ted, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11028
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241775
Summary:
Avoid using the TargetMachine owned DataLayout and use the Module owned
one instead. This requires passing the DataLayout up the stack to
ComputeValueVTs().
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
Reviewers: echristo
Subscribers: jholewinski, yaron.keren, rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D11019
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 241773
From the linker's perspective, an available_externally global is equivalent
to an external declaration (per isDeclarationForLinker()), so it is incorrect
to consider it to be a weak definition.
Also clean up some logic in the dead argument elimination pass and clarify
its comments to better explain how its behavior depends on linkage,
introduce GlobalValue::isStrongDefinitionForLinker() and start using
it throughout the optimizers and backend.
Differential Revision: http://reviews.llvm.org/D10941
llvm-svn: 241413
The summary is that it moves the mangling earlier and replaces a few
calls to .addExternalSymbol with addSym.
I originally wanted to replace all the uses of addExternalSymbol with
addSym, but noticed it was a lot of work and doesn't need to be done
all at once.
llvm-svn: 240395
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
This patch corresponds to review:
http://reviews.llvm.org/D9941
It adds the various FMA instructions introduced in the version 2.07 of
the ISA along with the testing for them. These are operations on single
precision scalar values in VSX registers.
llvm-svn: 238578
When the compare feeding a branch was in a different BB from the branch, we'd
try to "regenerate" the compare in the block with the branch, possibly trying
to make use of values not available there. Copy a page from AArch64's play book
here to fix the problem (at least in terms of correctness).
Fixes PR23640.
llvm-svn: 238097
This patch corresponds to review:
http://reviews.llvm.org/D8928
It adds direct move instructions to/from VSX registers to GPR's. These are
exploited for FP <-> INT conversions.
llvm-svn: 234682
Under normal circumstances, use of CR bits is disabled when running at -O0, but
it is enabled by default otherwise, and if you have optnone functions, they'll
still generally be generated with crbits turned on (because nothing else turns
them off). FastISel can't handle most things dealing with i1 values when using
CR bits, and checks for that, but was not checking the return type on
functions; we can't fast-isel function calls with i1 return values either when
using CR bits for boolean values.
Fixes PR22664.
llvm-svn: 233775
The VSX stores are sometimes generated with a undefined index register, causing %noreg to be used and R0 to be emitted later on. The semantics of the VSX store (e.g. stdsdx) requires R0 to be used as base if we want zero to be used in the computation of the effective address instead of the content of R0. This patch checks if no index register was generated and forces R0 to be used as base address.
llvm-svn: 232486
The TOC base pointer is passed in r2, and we normally reserve this register so
that we can depend on it being there. However, for leaf functions, and
specifically those leaf functions that don't do any TOC access of their own
(which is generally due to accessing the constant pool, using TLS, etc.),
we can treat r2 as an ordinary callee-saved register (it must be callee-saved
because, for local direct calls, the linker will not insert any save/restore
code).
The allocation order has been changed slightly for PPC64/ELF systems to put r2
at the end of the list (while leaving it near the beginning for Darwin systems
to prevent unnecessary output changes). While r2 is allocatable, using it still
requires spill/restore traffic, and thus comes at the end of the list.
llvm-svn: 227745
We don't need to exclude patchpoints from the implicit r2 dependence in
FastISel because it is added as an implicit operand and, thus, should not
confuse that StackMap code.
By inspection / no test case.
llvm-svn: 226434
Our PPC64 ELF V2 call lowering logic added r2 as an operand to all direct call
instructions in order to represent the dependency on the TOC base pointer
value. Restricting this to ELF V2, however, does not seem to make sense: calls
under ELF V1 have the same dependence, and indirect calls have an r2 dependence
just as direct ones. Make sure the dependence is noted for all calls under both
ELF V1 and ELF V2.
llvm-svn: 226432
The default calling convention specified by the PPC64 ELF (V1 and V2) ABI is
designed to work with both prototyped and non-prototyped/varargs functions. As
a result, GPRs and stack space are allocated for every argument, even those
that are passed in floating-point or vector registers.
GlobalOpt::OptimizeFunctions will transform local non-varargs functions (that
do not have their address taken) to use the 'fast' calling convention.
When functions are using the 'fast' calling convention, don't allocate GPRs for
arguments passed in other types of registers, and don't allocate stack space for
arguments passed in registers. Other changes for the fast calling convention
may be added in the future.
llvm-svn: 226399
This re-applies r225808, fixed to avoid problems with SDAG dependencies along
with the preceding fix to ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs.
These problems caused the original regression tests to assert/segfault on many
(but not all) systems.
Original commit message:
This commit does two things:
1. Refactors PPCFastISel to use more of the common infrastructure for call
lowering (this lets us take advantage of this common code for lowering some
common intrinsics, stackmap/patchpoint among them).
2. Adds support for stackmap/patchpoint lowering. For the most part, this is
very similar to the support in the AArch64 target, with the obvious differences
(different registers, NOP instructions, etc.). The test cases are adapted
from the AArch64 test cases.
One difference of note is that the patchpoint call sequence takes 24 bytes, so
you can't use less than that (on AArch64 you can go down to 16). Also, as noted
in the docs, we take the patchpoint address to be the actual code address
(assuming the call is local in the TOC-sharing sense), which should yield
higher performance than generating the full cross-DSO indirect-call sequence
and is likely just as useful for JITed code (if not, we'll change it).
StackMaps and Patchpoints are still marked as experimental, and so this support
is doubly experimental. So go ahead and experiment!
llvm-svn: 225909
This commit does two things:
1. Refactors PPCFastISel to use more of the common infrastructure for call
lowering (this lets us take advantage of this common code for lowering some
common intrinsics, stackmap/patchpoint among them).
2. Adds support for stackmap/patchpoint lowering. For the most part, this is
very similar to the support in the AArch64 target, with the obvious differences
(different registers, NOP instructions, etc.). The test cases are adapted
from the AArch64 test cases.
One difference of note is that the patchpoint call sequence takes 24 bytes, so
you can't use less than that (on AArch64 you can go down to 16). Also, as noted
in the docs, we take the patchpoint address to be the actual code address
(assuming the call is local in the TOC-sharing sense), which should yield
higher performance than generating the full cross-DSO indirect-call sequence
and is likely just as useful for JITed code (if not, we'll change it).
StackMaps and Patchpoints are still marked as experimental, and so this support
is doubly experimental. So go ahead and experiment!
llvm-svn: 225808
We really need a separate 64-bit version of this instruction so that it can be
marked as clobbering LR8 (instead of just LR). No change in functionality
(although the verifier might be slightly happier), however, it is required for
stackmap/patchpoint support. Thus, this will be covered by stackmap test cases
once those are added.
llvm-svn: 225804
When materializing constant i1 values, they must be zero extended. We represent
i1 values as [0, 1], not [0, -1], in i32 registers. As it turns out, this code
path was dead for i1 values prior to r216006 (which is why this did not manifest in
miscompiles until recently).
Fixes -O0 self-hosting on PPC64/Linux.
llvm-svn: 224842
This patch adds VSX floating point loads and stores to fastisel.
Along with the change to tablegen (D6220), VSX instructions are now fully supported in fastisel.
http://reviews.llvm.org/D6274
llvm-svn: 223507
The current implementation of GPR->FPR register moves uses a stack slot. This mechanism writes a double word and reads a word. In big-endian the load address must be displaced by 4-bytes in order to get the right value. In little endian this is no longer required. This patch fixes the issue and adds LE regression tests to fast-isel-conversion which currently expose this problem.
llvm-svn: 219441
For PPC targets, FastISel does not take the sign extension information into account when selecting return instructions whose operands are constants. A consequence of this is that the return of boolean values is not correct. This patch fixes the problem by evaluating the sign extension information also for constants, forwarding this information to PPCMaterializeInt which takes this information to drive the sign extension during the materialization.
llvm-svn: 217993
This is the final round of renaming. This changes tblgen to emit lower-case
function names for FastEmitInst_* and FastEmit_*, and updates all its uses
in the source code.
Reviewed by Eric
llvm-svn: 217075
to get the subtarget and that's accessible from the MachineFunction
now. This helps clear the way for smaller changes where we getting
a subtarget will require passing in a MachineFunction/Function as
well.
llvm-svn: 214988
The ELFv2 ABI reduces the amount of stack required to implement an
ABI-compliant function call in two ways:
* the "linkage area" is reduced from 48 bytes to 32 bytes by
eliminating two unused doublewords
* the 64-byte "parameter save area" is now optional and need not be
present in certain cases (it remains mandatory in functions with
variable arguments, and functions that have any parameter that is
passed on the stack)
The following patch implements this required changes:
- reducing the linkage area, and associated relocation of the TOC save
slot, in getLinkageSize / getTOCSaveOffset (this requires updating all
callers of these routines to pass in the isELFv2ABI flag).
- (partially) handling the case where the parameter save are is optional
This latter part requires some extra explanation: Currently, we still
always allocate the parameter save area when *calling* a function.
That is certainly always compliant with the ABI, but may cause code to
allocate stack unnecessarily. This can be addressed by a follow-on
optimization patch.
On the *callee* side, in LowerFormalArguments, we *must* track
correctly whether the ABI guarantees that the caller has allocated
the parameter save area for our use, and the patch does so. However,
there is one complication: the code that handles incoming "byval"
arguments will currently *always* write to the parameter save area,
because it has to force incoming register arguments to the stack since
it must return an *address* to implement the byval semantics.
To fix this, the patch changes the LowerFormalArguments code to write
arguments to a freshly allocated stack slot on the function's own stack
frame instead of the argument save area in those cases where that area
is not present.
Reviewed by Hal Finkel.
llvm-svn: 213490
This patch builds upon the two preceding MC changes to implement the
basic ELFv2 function call convention. In the ELFv1 ABI, a "function
descriptor" was associated with every function, pointing to both the
entry address and the related TOC base (and a static chain pointer
for nested functions). Function pointers would actually refer to that
descriptor, and the indirect call sequence needed to load up both entry
address and TOC base.
In the ELFv2 ABI, there are no more function descriptors, and function
pointers simply refer to the (global) entry point of the function code.
Indirect function calls simply branch to that address, after loading it
up into r12 (as required by the ABI rules for a global entry point).
Direct function calls continue to just do a "bl" to the target symbol;
this will be resolved by the linker to the local entry point of the
target function if it is local, and to a PLT stub if it is global.
That PLT stub would then load the (global) entry point address of the
final target into r12 and branch to it. Note that when performing a
local function call, r2 must be set up to point to the current TOC
base: if the target ends up local, the ABI requires that its local
entry point is called with r2 set up; if the target ends up global,
the PLT stub requires that r2 is set up.
This patch implements all LLVM changes to implement that scheme:
- No longer create a function descriptor when emitting a function
definition (in EmitFunctionEntryLabel)
- Emit two entry points *if* the function needs the TOC base (r2)
anywhere (this is done EmitFunctionBodyStart; note that this cannot
be done in EmitFunctionBodyStart because the global entry point
prologue code must be *part* of the function as covered by debug info).
- In order to make use tracking of r2 (as needed above) work correctly,
mark direct function calls as implicitly using r2.
- Implement the ELFv2 indirect function call sequence (no function
descriptors; load target address into r12).
- When creating an ELFv2 object file, emit the .abiversion 2 directive
to tell the linker to create the appropriate version of PLT stubs.
Reviewed by Hal Finkel.
llvm-svn: 213489
PR20071 identifies a problem in PowerPC's fast-isel implementation for
floating-point conversion to integer. The fctiduz instruction was added in
Power ISA 2.06 (i.e., Power7 and later). However, this instruction is being
generated regardless of which 64-bit PowerPC target is selected.
The intent is for fast-isel to punt to DAG selection when this instruction is
not available. This patch implements that change. For testing purposes, the
existing fast-isel-conversion.ll test adds a RUN line for -mcpu=970 and tests
for the expected code generation. Additionally, the existing test
fast-isel-conversion-p5.ll was found to be incorrectly expecting the
unavailable instruction to be generated. I've removed these test variants
since we have adequate coverage in fast-isel-conversion.ll.
llvm-svn: 211627
As of r211495, the only remaining users of getMinCallFrameSize are in
core ABI code (LowerFormalParameter / LowerCall). This is actually a
good thing, since the details of the parameter save area are ABI specific.
With the new ELFv2 ABI in particular, the rules defining the size of the
save area will become significantly more complex, so it wouldn't make
sense to implement those outside ABI code that has all required
information.
In preparation, this patch eliminates the getMinCallFrameSize (and
associated getMinCallArgumentsSize) routines, and inlines them into all
callers. Note that since nearly all call arguments are constant, this
allows simplifying the inlined copies to a single line everywhere.
No change in generate code expected.
llvm-svn: 211497
The PPCFrameLowering::determineFrameLayout routine currently ensures
that every function that allocates a stack frame provides space for the
parameter save area (via PPCFrameLowering::getMinCallFrameSize).
This is actually not necessary. There may be functions that never call
another routine but still allocate a frame; those do not require the
parameter save area. In the future, with the ELFv2 ABI, even some
routines that do call other functions do not need to allocate the
parameter save area.
While it is not a bug to allocate the parameter area when it is not
needed, it is better to avoid it to save stack space.
Note that when any particular function call requires the parameter save
area, this space will already have been included by ABI code in the size
the CALLSEQ_START insn is annotated with, and therefore included in the
size returned by MFI->getMaxCallFrameSize().
This means that determineFrameLayout simply does not need to care about
the parameter save area. (It still needs to ensure that every frame
provides the linkage area.) This is implemented by this patch.
Note that this exposed a bug in the new fast-isel code where the parameter
area was *not* included in the CALLSEQ_START size; this is also fixed.
A couple of test cases needed to be adapted for the new (smaller) stack
frame size those tests now see.
llvm-svn: 211495
Rafael opened http://llvm.org/bugs/show_bug.cgi?id=19893 to track non-optimal
code generation for forming a function address that is local to the compile
unit. The existing code was treating both local and non-local functions
identically.
This patch fixes the problem by properly identifying local functions and
generating the proper addis/addi code. I also noticed that Rafael's earlier
changes to correct the surrounding code in PPCISelLowering.cpp were also
needed for fast instruction selection in PPCFastISel.cpp, so this patch
fixes that code as well.
The existing test/CodeGen/PowerPC/func-addr.ll is modified to test the new
code generation. I've added a -O0 run line to test the fast-isel code as
well.
Tested on powerpc64[le]-unknown-linux-gnu with no regressions.
llvm-svn: 211056
This matches gcc's behavior. It also seems natural given that aliases
contain other properties that govern how it is accessed (linkage,
visibility, dll storage).
Clang still has to be updated to expose this feature to C.
llvm-svn: 209759