Summary:
Swig wraps C++ code into SWIG_PYTHON_THREAD_BEGIN_ALLOW; ... SWIG_PYTHON_THREAD_END_ALLOW;
Thus, LLDB crashes with "Fatal Python error: Python memory allocator called without holding the GIL" when calls an lldb_SB***___str__ function.
Reviewers: clayborg
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D51569
llvm-svn: 341482
Summary:
This change fixes one issue with `lldb.command`, and also reduces the implementation.
The fix: a command function's docstring was not shown when running `help <command_name>`. This is because the docstring attached the source function is not propagated to the decorated function (`f.__call__`). By returning the original function, the docstring will be properly displayed by `help`.
Also with this change, the command name is assumed to be the function's name, but can still be explicitly defined as previously.
Additionally, the implementation was updated to:
* Remove inner class
* Remove use of `inspect` module
* Remove `*args` and `**kwargs`
Reviewers: clayborg
Reviewed By: clayborg
Subscribers: keith, xiaobai, lldb-commits
Differential Revision: https://reviews.llvm.org/D48658
llvm-svn: 336287
When introduced, breakpoint names were just tags that you could
apply to breakpoints that would allow you to refer to a breakpoint
when you couldn't capture the ID, or to refer to a collection of
breakpoints.
This change makes the names independent holders of breakpoint options
that you can then apply to breakpoints when you add the name to the
breakpoint. It adds the "breakpoint name configure" command to set
up or reconfigure breakpoint names. There is also full support for
then in the SB API, including a new SBBreakpointName class.
The connection between the name and the breakpoints
sharing the name remains live, so if you reconfigure the name, all the
breakpoint options all change as well. This allows a quick way
to share complex breakpoint behavior among a bunch of breakpoints, and
a convenient way to iterate on the set.
You can also create a name from a breakpoint, allowing a quick way
to copy options from one breakpoint to another.
I also added the ability to make hidden and delete/disable protected
names. When applied to a breakpoint, you will only be able to list,
delete or disable that breakpoint if you refer to it explicitly by ID.
This feature will allow GUI's that need to use breakpoints for their
own purposes to keep their breakpoints from getting accidentally
disabled or deleted.
<rdar://problem/22094452>
llvm-svn: 313292
This:
a) teaches PythonCallable to look inside a callable object
b) teaches PythonCallable to discover whether a callable method is bound
c) teaches lldb.command to dispatch to either the older 4 argument version or the newer 5 argument version
llvm-svn: 273640
The explicit APIs on SBValue obviously remain if one wants to be explicit in intent, or override this guess, but since __int__() has to pick one, an educated guess is definitely better than than always going to signed regardless
Fixes rdar://24556976
llvm-svn: 260349
Fixed a crash that would happen if you tried to get the name of a constructor or destructor by calling "getDeclName()" instead of calling getName() (which would assert and crash).
Added the ability to get function arguments names from SBFunction.
llvm-svn: 252622
On a suggestion from Jim Ingham, this class allows you to very easily define synthetic child providers that return a synthetic value (in the sense of r219330), but no children
Also, document this new feature in our www docs
llvm-svn: 219337
The many many benefits include:
1 - Input/Output/Error streams are now handled as real streams not a push style input
2 - auto completion in python embedded interpreter
3 - multi-line input for "script" and "expression" commands now allow you to edit previous/next lines using up and down arrow keys and this makes multi-line input actually a viable thing to use
4 - it is now possible to use curses to drive LLDB (please try the "gui" command)
We will need to deal with and fix any buildbot failures and tests and arise now that input/output and error are correctly hooked up in all cases.
llvm-svn: 200263
There are two new classes:
lldb::SBModuleSpec
lldb::SBModuleSpecList
The SBModuleSpec wraps up a lldb_private::ModuleSpec, and SBModuleSpecList wraps up a lldb_private::ModuleSpecList.
llvm-svn: 185877
The script was able to point out and save 40 bytes in each lldb_private::Section by being very careful where we need to have virtual destructors and also by re-ordering members.
llvm-svn: 184364
@lldb.command("new_command", "Documentation string for new_command...")
def new_command(debugger, command, result, dict):
....
No more need to register your command in the __lldb_init_module function!
llvm-svn: 184274
SWIG is smart enough to recognize that C++ operators == and != mean __eq__ and __ne__ in Python and do the appropriate translation
But it is not smart enough to recognize that mySBObject == None should return False instead of erroring out
The %pythoncode blocks are meant to provide those extra smarts (and they play some SWIG&Python magic to find the right function to call behind the scenes with no risk of typos :-)
Lastly, SBBreakpoint provides an == but never provided a != operator - common courtesy is to provide both
llvm-svn: 180987
Making value objects properly iterable in constructs of the form
[ x for x in value_with_children ]
This would previously cause an endless loop because lacking a proper iterator object, Python will keep calling __getitem__() with increasing values of the index until it gets an IndexError
since SBValue::GetValueForExpressionPath() supports synthetic array members, no array index will ever really cause an IndexError to be raised, hence the endless iteration
class value_iter is an implementation of __iter__() that provides a terminating iterator over a value
llvm-svn: 177885
It is replaced by a Print("str") call which is equivalent to Printf("%s","str")
- Providing file-like behavior for SBStream with appropriate extension write() and flush() calls, plus documenting that these are only meant and only exist for Python
Documenting the file-like behavior on our website
llvm-svn: 177877
Exports write() and flush() from SBCommandReturnObject to enable file-like output from Python commands.
e.g.:
def ls(debugger, command, result, internal_dict):
print >>result,”just “some output”
will produce
(lldb) ls
just “some output
(lldb)
llvm-svn: 177807
starting lldb I get
% ./lldb -x
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "/private/tmp/build/Debug/LLDB.framework/Versions/A/Resources/Python/lldb/__init__.py", line 9008
raise TypeError("No array item of type %s" % str(type(key)))
^
SyntaxError: invalid syntax
Traceback (most recent call last):
File "<string>", line 1, in <module>
NameError: name 'run_one_line' is not defined
Traceback (most recent call last):
File "<string>", line 1, in <module>
NameError: name 'run_one_line' is not defined
Traceback (most recent call last):
File "<string>", line 1, in <module>
NameError: name 'run_one_line' is not defined
(lldb)
I did a clean build and still got the problem so I'm backing this out until Enrico can
look at it.
llvm-svn: 165356
- Tweaked a parameter name in SBDebugger.h so my typemap will catch it;
- Added a SBDebugger.Create(bool, callback, baton) to the swig interface;
- Added SBDebugger.SetLoggingCallback to the swig interface;
- Added a callback utility function for log callbacks;
- Guard against Py_None on both callback utility functions;
- Added a FIXME to the SBDebugger API test;
- Added a __del__() stub for SBDebugger.
We need to be able to get both the log callback and baton from an
SBDebugger if we want to protect against memory leaks (or make the user
responsible for holding another reference to the callback).
Additionally, it's impossible to revert from a callback-backed log
mechanism to a file-backed log mechanism.
llvm-svn: 162633
Now it's possible to use SBInputReader callbacks in Python.
We leak the callback object, unfortunately. A __del__ method can be added
to SBInputReader, but we have no way to check the callback function that
is on the reader. So we can't call Py_DECREF on it when we have our
PythonCallback function. One way to do it is to assume that reified
SBInputReaders always have a Python callback (and always call Py_DECREF).
Another one is to add methods or properties to SBInputReader (or make the
m_callback_function property public).
llvm-svn: 162356
New public API for handling formatters: creating, deleting, modifying categories, and formatters, and managing type/formatter association.
This provides SB classes for each of the main object types involved in providing formatter support:
SBTypeCategory
SBTypeFilter
SBTypeFormat
SBTypeSummary
SBTypeSynthetic
plus, an SBTypeNameSpecifier class that is used on the public API layer to abstract the notion that formatters can be applied to plain type-names as well as to regular expressions
For naming consistency, this patch also renames a lot of formatters-related classes.
Plus, the changes in how flags are handled that started with summaries is now extended to other classes as well. A new enum (lldb::eTypeOption) is meant to support this on the public side.
The patch also adds several new calls to the formatter infrastructure that are used to implement by-index accessing and several other design changes required to accommodate the new API layer.
An architectural change is introduced in that backing objects for formatters now become writable. On the public API layer, CoW is implemented to prevent unwanted propagation of changes.
Lastly, there are some modifications in how the "default" category is constructed and managed in relation to other categories.
llvm-svn: 150558
interface (.i) files for each class.
Changed the FindFunction class from:
uint32_t
SBTarget::FindFunctions (const char *name,
uint32_t name_type_mask,
bool append,
lldb::SBSymbolContextList& sc_list)
uint32_t
SBModule::FindFunctions (const char *name,
uint32_t name_type_mask,
bool append,
lldb::SBSymbolContextList& sc_list)
To:
lldb::SBSymbolContextList
SBTarget::FindFunctions (const char *name,
uint32_t name_type_mask = lldb::eFunctionNameTypeAny);
lldb::SBSymbolContextList
SBModule::FindFunctions (const char *name,
uint32_t name_type_mask = lldb::eFunctionNameTypeAny);
This makes the API easier to use from python. Also added the ability to
append a SBSymbolContext or a SBSymbolContextList to a SBSymbolContextList.
Exposed properties for lldb.SBSymbolContextList in python:
lldb.SBSymbolContextList.modules => list() or all lldb.SBModule objects in the list
lldb.SBSymbolContextList.compile_units => list() or all lldb.SBCompileUnits objects in the list
lldb.SBSymbolContextList.functions => list() or all lldb.SBFunction objects in the list
lldb.SBSymbolContextList.blocks => list() or all lldb.SBBlock objects in the list
lldb.SBSymbolContextList.line_entries => list() or all lldb.SBLineEntry objects in the list
lldb.SBSymbolContextList.symbols => list() or all lldb.SBSymbol objects in the list
This allows a call to the SBTarget::FindFunctions(...) and SBModule::FindFunctions(...)
and then the result can be used to extract the desired information:
sc_list = lldb.target.FindFunctions("erase")
for function in sc_list.functions:
print function
for symbol in sc_list.symbols:
print symbol
Exposed properties for the lldb.SBSymbolContext objects in python:
lldb.SBSymbolContext.module => lldb.SBModule
lldb.SBSymbolContext.compile_unit => lldb.SBCompileUnit
lldb.SBSymbolContext.function => lldb.SBFunction
lldb.SBSymbolContext.block => lldb.SBBlock
lldb.SBSymbolContext.line_entry => lldb.SBLineEntry
lldb.SBSymbolContext.symbol => lldb.SBSymbol
Exposed properties for the lldb.SBBlock objects in python:
lldb.SBBlock.parent => lldb.SBBlock for the parent block that contains
lldb.SBBlock.sibling => lldb.SBBlock for the sibling block to the current block
lldb.SBBlock.first_child => lldb.SBBlock for the first child block to the current block
lldb.SBBlock.call_site => for inline functions, return a lldb.declaration object that gives the call site file, line and column
lldb.SBBlock.name => for inline functions this is the name of the inline function that this block represents
lldb.SBBlock.inlined_block => returns the inlined function block that contains this block (might return itself if the current block is an inlined block)
lldb.SBBlock.range[int] => access the address ranges for a block by index, a list() with start and end address is returned
lldb.SBBlock.ranges => an array or all address ranges for this block
lldb.SBBlock.num_ranges => the number of address ranges for this blcok
SBFunction objects can now get the SBType and the SBBlock that represents the
top scope of the function.
SBBlock objects can now get the variable list from the current block. The value
list returned allows varaibles to be viewed prior with no process if code
wants to check the variables in a function. There are two ways to get a variable
list from a SBBlock:
lldb::SBValueList
SBBlock::GetVariables (lldb::SBFrame& frame,
bool arguments,
bool locals,
bool statics,
lldb::DynamicValueType use_dynamic);
lldb::SBValueList
SBBlock::GetVariables (lldb::SBTarget& target,
bool arguments,
bool locals,
bool statics);
When a SBFrame is used, the values returned will be locked down to the frame
and the values will be evaluated in the context of that frame.
When a SBTarget is used, global an static variables can be viewed without a
running process.
llvm-svn: 149853
instead of the __repr__. __repr__ is a function that should return an
expression that can be used to recreate an python object and we were using
it to just return a human readable string.
Fixed a crasher when using the new implementation of SBValue::Cast(SBType).
Thread hardened lldb::SBValue and lldb::SBWatchpoint and did other general
improvements to the API.
Fixed a crasher in lldb::SBValue::GetChildMemberWithName() where we didn't
correctly handle not having a target.
llvm-svn: 149743
lldb.SBValueList now exposes the len() method and also allows item access:
lldb.SBValueList[<int>] - where <int> is an integer index into the list, returns a single lldb.SBValue which might be empty if the index is out of range
lldb.SBValueList[<str>] - where <str> is the name to look for, returns a list() of lldb.SBValue objects with any matching values (the list might be empty if nothing matches)
lldb.SBValueList[<re>] - where <re> is a compiles regular expression, returns a list of lldb.SBValue objects for containing any matches or a empty list if nothing matches
lldb.SBFrame now exposes:
lldb.SBFrame.variables => SBValueList of all variables that are in scope
lldb.SBFrame.vars => see lldb.SBFrame.variables
lldb.SBFrame.locals => SBValueList of all variables that are locals in the current frame
lldb.SBFrame.arguments => SBValueList of all variables that are arguments in the current frame
lldb.SBFrame.args => see lldb.SBFrame.arguments
lldb.SBFrame.statics => SBValueList of all static variables
lldb.SBFrame.registers => SBValueList of all registers for the current frame
lldb.SBFrame.regs => see lldb.SBFrame.registers
Combine any of the above properties with the new lldb.SBValueList functionality
and now you can do:
y = lldb.frame.vars['rect.origin.y']
or
vars = lldb.frame.vars
for i in range len(vars):
print vars[i]
Also expose "lldb.SBFrame.var(<str>)" where <str> can be en expression path
for any variable or child within the variable. This makes it easier to get a
value from the current frame like "rect.origin.y". The resulting value is also
not a constant result as expressions will return, but a live value that will
continue to track the current value for the variable expression path.
lldb.SBValue now exposes:
lldb.SBValue.unsigned => unsigned integer for the value
lldb.SBValue.signed => a signed integer for the value
llvm-svn: 149684
(lldb) script
>>> frames = lldb.thread.frames
>>> for frame in frames:
... print frame
Also changed all of the "__repr__" methods to strip any trailing newline characters so we don't end up with entra newlines.
llvm-svn: 149466
lldb.value()
It it designed to be given a lldb.SBValue object and it allows natural
use of a variable value:
pt = lldb.value(lldb.frame.FindVariable("pt"))
print pt
print pt.x
print pt.y
pt = lldb.frame.FindVariable("rectangle_array")
print rectangle_array[12]
print rectangle_array[5].origin.x
Note that array access works just fine and works on arrays or pointers:
pt = lldb.frame.FindVariable("point_ptr")
print point_ptr[5].y
Also note that pointer child accesses are done using a "." instead of "->":
print point_ptr.x
llvm-svn: 149464
Fixed an issues with the SBType and SBTypeMember classes:
- Fixed SBType to be able to dump itself from python
- Fixed SBType::GetNumberOfFields() to return the correct value for objective C interfaces
- Fixed SBTypeMember to be able to dump itself from python
- Fixed the SBTypeMember ability to get a field offset in bytes (the value
being returned was wrong)
- Added the SBTypeMember ability to get a field offset in bits
Cleaned up a lot of the Stream usage in the SB API files.
llvm-svn: 144493
to the Python interface.
Implement yet another (threre're 3 now) iterator protocol for SBTarget: watchpoint_location_iter(),
to iterate on the available watchpoint locations. And add a print representation for
SBWatchpointLocation.
Exercise some of these Python API with TestWatchpointLocationIter.py.
llvm-svn: 140595
contents starting at an offset (2 separate methods). This helps
the scripting interface stay more natural by allowing both from
Python.
Added the ability to dump data with address annotations when
call SBData::GetDescription().
Hooked up the SBSection to the __repr__ so you can print section
objects from within python.
Improved the dumping of symbols from python.
Fixed the .i interface references which were set to "Relative to this Group"
which somehow included Jim's "lldb-clean" root directory in the path. The
interfaces are now in a folder called "interfaces" withing the Xcode API
subfolder.
llvm-svn: 140451
- introduced two new classes ValueObjectConstResultChild and ValueObjectConstResultImpl: the first one is a ValueObjectChild obtained from
a ValueObjectConstResult, the second is a common implementation backend for VOCR and VOCRCh of method calls meant to read through pointers stored
in frozen objects ; now such reads transparently move from host to target as required
- as a consequence of the above, removed code that made target-memory copies of expression results in several places throughout LLDB, and also
removed code that enabled to recognize an expression result VO as such
- introduced a new GetPointeeData() method in ValueObject that lets you read a given amount of objects of type T from a VO
representing a T* or T[], and doing dereferences transparently
in private layer it returns a DataExtractor ; in public layer it returns an instance of a newly created lldb::SBData
- as GetPointeeData() does the right thing for both frozen and non-frozen ValueObject's, reimplemented ReadPointedString() to use it
en lieu of doing the raw read itself
- introduced a new GetData() method in ValueObject that lets you get a copy of the data that backs the ValueObject (for pointers,
this returns the address without any previous dereferencing steps ; for arrays it actually reads the whole chunk of memory)
in public layer this returns an SBData, just like GetPointeeData()
- introduced a new CreateValueFromData() method in SBValue that lets you create a new SBValue from a chunk of data wrapped in an SBData
the limitation to remember for this kind of SBValue is that they have no address: extracting the address-of for these objects (with any
of GetAddress(), GetLoadAddress() and AddressOf()) will return invalid values
- added several tests to check that "p"-ing objects (STL classes, char* and char[]) will do the right thing
Solved a bug where global pointers to global variables were not dereferenced correctly for display
New target setting "max-string-summary-length" gives the maximum number of characters to show in a string when summarizing it, instead of the hardcoded 128
Solved a bug where the summary for char[] and char* would not be shown if the ValueObject's were dumped via the "p" command
Removed m_pointers_point_to_load_addrs from ValueObject. Introduced a new m_address_type_of_children, which each ValueObject can set to tell the address type
of any pointers and/or references it creates. In the current codebase, this is load address most of the time (the only notable exception being file
addresses that generate file address children UNLESS we have a live process)
Updated help text for summary-string
Fixed an issue in STL formatters where std::stlcontainer::iterator would match the container's synthetic children providers
Edited the syntax and help for some commands to have proper argument types
llvm-svn: 139160
i.e., with 'SBStream &description' first, followed by 'DescriptionLevel level'.
Modify lldbutil.py so that get_description() for a target or breakpoint location
can just take the lldb object itself without specifying an option to mean option
lldb.eDescriptionLevelBrief. Modify TestTargetAPI.py to exercise this logic path.
llvm-svn: 130147
it logs the function calls, their arguments and the return values. This is not
complete or polished, but I am committing it now, at the request of someone who
really wants to use it, even though it's not really done. It currently does not
attempt to log all the functions, just the most important ones. I will be
making further adjustments to the API logging code over the next few days/weeks.
(Suggestions for improvements are welcome).
Update the Python build scripts to re-build the swig C++ file whenever
the python-extensions.swig file is modified.
Correct the help for 'log enable' command (give it the correct number & type of
arguments).
llvm-svn: 117349
tricks to get types to resolve. I did this by correctly including the correct
files: stdint.h and all lldb-*.h files first before including the API files.
This allowed me to remove all of the hacks that were in the lldb.swig file
and it also allows all of the #defines in lldb-defines.h and enumerations
in lldb-enumerations.h to appear in the lldb.py module. This will make the
python script code a lot more readable.
Cleaned up the "process launch" command to not execute a "process continue"
command, it now just does what it should have with the internal API calls
instead of executing another command line command.
Made the lldb_private::Process set the state to launching and attaching if
WillLaunch/WillAttach return no error respectively.
llvm-svn: 115902
into python-extensions.swig, which gets included into lldb.swig, and
adds them back into the classes when swig generates it's C++ file. This
keeps the Python stuff out of the general API classes.
Also fixed a small bug in the copy constructor for SBSymbolContext.
llvm-svn: 114602