table offset where the offset is within a section. Increased the section
offset for line table entries to be 32 bits (from 24 bits), giving each
section a 4G offset, and increased the section index to 32 bits (from 8 bits).
llvm-svn: 122200
a shell would interpret it. A few examples that we now handle correctly
INPUT: "Hello "world
OUTPUT: "Hello World"
INPUT: "Hello "' World'
OUTPUT: "Hello World"
INPUT: Hello" World"
OUTPUT: "Hello World"
This broke the setting of dictionary values for the "settings set" command
for things like:
(lldb) settings set target.process.env-vars ["MY_ENV_VAR"]=YES
since we would drop the quotes. I fixed the user settings controller to use
a regular expression so it can accept any of the following inputs for
dictionary setting:
settings set target.process.env-vars ["MY_ENV_VAR"]=YES
settings set target.process.env-vars [MY_ENV_VAR]=YES
settings set target.process.env-vars MY_ENV_VAR=YES
We might want to eventually drop the first two syntaxes, but I won't make
that decision right now.
This allows more natural setting of the envirorment variables:
settings set target.process.env-vars MY_ENV_VAR=YES ABC=DEF CWD=/tmp
llvm-svn: 122166
line commands can use the current thread/frame.
Fixed an issue with expressions that get sandboxed in an objective C method
where unichar wasn't being passed down.
Added a "static size_t Scalar::GetMaxByteSize();" function in case we need
to know the max supported by size of something within a Scalar object.
llvm-svn: 122027
can avoid running the code in the target if the
expression's result is known and the expression
has no side effects.
Right now this feature is quite conservative in
its guess about side effects, and it only computes
integer results, but the machinery to make it more
sophisticated is there.
llvm-svn: 121952
function and also hooked up better error reporting for when things fail.
Fixed issues with trying to display children of pointers when none are
supposed to be shown (no children for function pointers, and more like this).
This was causing child value objects to be made that were correctly firing
an assertion.
llvm-svn: 121841
SBValue SBFrame::LookupVar(const char *name);
To
SBValue SBFrame::FindVariable (const char *name);
Changed:
SBValue LookupVarInScope (const char *name, const char *scope);
to
SBValue FindValue (const char *name, ValueType value_type);
The latter makes it possible to not only find variables (params, locals, globals, and statics), but we can also now get register sets, registers and persistent variables using the frame as the context.
llvm-svn: 121777
values or persistent expression variables. Now if an expression consists of
a value that is a child of a variable, or of a persistent variable only, we
will create a value object for it and make a ValueObjectConstResult from it to
freeze the value (for program variables only, not persistent variables) and
avoid running JITed code. For everything else we still parse up and JIT code
and run it in the inferior.
There was also a lot of clean up in the expression code. I made the
ClangExpressionVariables be stored in collections of shared pointers instead
of in collections of objects. This will help stop a lot of copy constructors on
these large objects and also cleans up the code considerably. The persistent
clang expression variables were moved over to the Target to ensure they persist
across process executions.
Added the ability for lldb_private::Target objects to evaluate expressions.
We want to evaluate expressions at the target level in case we aren't running
yet, or we have just completed running. We still want to be able to access the
persistent expression variables between runs, and also evaluate constant
expressions.
Added extra logging to the dynamic loader plug-in for MacOSX. ModuleList objects
can now dump their contents with the UUID, arch and full paths being logged with
appropriate prefix values.
Thread hardened the Communication class a bit by making the connection auto_ptr
member into a shared pointer member and then making a local copy of the shared
pointer in each method that uses it to make sure another thread can't nuke the
connection object while it is being used by another thread.
Added a new file to the lldb/test/load_unload test that causes the test a.out file
to link to the libd.dylib file all the time. This will allow us to test using
the DYLD_LIBRARY_PATH environment variable after moving libd.dylib somewhere else.
llvm-svn: 121745
the code to pass the _cmd pointer has been improved, and _cmd
is now set to the value of _cmd for the current context, as
opposed to being simply NULL.
llvm-svn: 121739
access to the members of the Objective-C self object.
The approach we take is to generate the method as a
@category on top of the self object, and to pass the
"self" pointer to it. (_cmd is currently NULL.)
Most changes are in ClangExpressionDeclMap, but the
change that adds support to the ABIs to pass _cmd
touches a fair amount of code.
llvm-svn: 121722
the lldb PyThon API SBSourceManager to display source files.
To accomodate this, the C++ SBSourceManager API has been changed to take an
lldb::SBStream as the destination for display of source lines. Modify SBStream::ctor()
so that its opaque pointer is initialized with an StreamString instance.
llvm-svn: 121605
- Added new utility function to Arg, GetQuotedCommandString, which re-assembles
the args into a string, replacing quotes that were originally there.
- Modified user settings stuff to always show individual elements when printing out
arrays and dictionaries.
- Added more extensive help to 'settings set', explaining more about dictionaries
and arrays (including current dictionary syntax).
- Fixed bug in user settings where quotes were being stripped and lost, so that
sometimes array or dictionary elements that ought to have been a single element
were being split up.
llvm-svn: 121438
logic for finding the target of a method dispatch into this function, insert & call it. Gets calls to super, and all the
fixup & fixedup variants working properly. Also gets the class from the object so that we step through KVO wrapper methods
into the actual user code.
llvm-svn: 121437
not the command should take raw input, then handle & dispatch the arguments appropriately.
Also change the 'alias' command to be a command that takes raw input. This is necessary to
allow aliases to be created for other commands that take raw input and might want to include
raw input in the alias itself.
Fix a bug in the aliasing mechanism when creating aliases for commands with 3-or-more words.
Raw input should now be properly handled by all the command and alias mechanisms.
llvm-svn: 121423
file data, so if a source file was modified, we would always show the first
cached copy of the source data. We now check file modification times when
displaying source info so we can show the update source info.
llvm-svn: 121278
have children sections).
Modified SectionLoadList to do it's own multi-threaded protected on its map.
The ThreadSafeSTLMap class was difficult to deal with and wasn't providing
much utility, it was only getting in the way.
Make sure when the communication read thread is about to exit, it clears the
thread in the main class.
Fixed the ModuleList to correctly ignore architectures and UUIDs if they aren't
valid when searching for a matching module. If we specified a file with no arch,
and then modified the file and loaded it again, it would not match on subsequent
searches if the arch was invalid since it would compare an invalid architecture
to the one that was found or selected within the shared library or executable.
This was causing stale modules to stay around in the global module list when they
should have been removed.
Removed deprecated functions from the DynamicLoaderMacOSXDYLD class.
Modified "ProcessGDBRemote::IsAlive" to check if we are connected to a gdb
server and also make sure our process hasn't exited.
llvm-svn: 121236
- Add logging for command resolution ('log enable lldb commands')
- Fix alias resolution to properly handle commands that take raw input (resolve the alias, but
don't muck up the raw arguments).
Net result: Among other things, 'expr' command can now take strings with escaped characters and
not have the command handling & alias resolution code muck up the escaped characters. E.g.
'expr printf ("\n\n\tHello there!")' should now work properly.
Not working yet: Creating aliases with raw input for commands that take raw input. Working on that.
e.g. 'command alias print_hi expr printf ("\n\tHi!")' does not work yet.
llvm-svn: 121171
ModuleList so they don't show up in the images. Breakpoint locations that are
in shared libraries that get unloaded will persist though so that if you
have plug-ins that load/unload and you have a breakpoint set on functions
in the plug-ins, the hit counts will persist between loads/unloads.
llvm-svn: 121069
do. Closing on EOF is an option that can be set on the
lldb_private::Communication or the lldb::SBCommunication objects after they
are created. Of course the EOF support isn't hooked up, so they don't do
anything at the moment, but they are left in so when the code is fixed, it
will be easy to get working again.
llvm-svn: 120885
was done as an settings variable in the process for now. We will eventually
move all environment stuff over to the target, but we will leave it with the
process for now. The default setting is for a process to inherit the host
environment. This can be disabled by setting the "inherit-env" setting to
false in the process.
llvm-svn: 120862
inferior to be launched without setting up terminal stdin/stdout for it
(leaving the lldb command line accessible while the program is executing).
Also add a user settings variable, 'target.process.disable-stdio' to allow
the user to set this globally rather than having to use the command option
each time the process is launched.
llvm-svn: 120825
an error saying the resume timed out. Previously the thread that was trying
to resume the process would eventually call ProcessGDBRemote::DoResume() which
would broadcast an event over to the async GDB remote thread which would sent the
continue packet to the remote gdb server. Right after this was sent, it would
set a predicate boolean value (protected by a mutex and condition) and then the
thread that issued the ProcessGDBRemote::DoResume() would then wait for that
condition variable to be set. If the async gdb thread was too quick though, the
predicate boolean value could have been set to true and back to false by the
time the thread that issued the ProcessGDBRemote::DoResume() checks the boolean
value. So we can't use the predicate value as a handshake. I have changed the code
over to using a Event by having the GDB remote communication object post an
event:
GDBRemoteCommunication::eBroadcastBitRunPacketSent
This allows reliable handshaking between the two threads and avoids the erroneous
ProcessGDBRemote::DoResume() errors.
Added a host backtrace service to allow in process backtraces when trying to track
down tricky issues. I need to see if LLVM has any backtracing abilities abstracted
in it already, and if so, use that, but I needed something ASAP for the current issue
I was working on. The static function is:
void
Host::Backtrace (Stream &strm, uint32_t max_frames);
And it will backtrace at most "max_frames" frames for the current thread and can be
used with any of the Stream subclasses for logging.
llvm-svn: 120793
so that it is not referring to potentially stale
state during IR execution.
This was done by introducing modular state (like
ClangExpressionVariable) where groups of state
variables have well-defined lifetimes:
- m_parser_vars are specific to parsing, and only
exist between calls to WillParse() and DidParse().
- m_struct_vars survive for the entire execution
of the ClangExpressionDeclMap because they
provide the template for a materialized set of
expression variables.
- m_material_vars are specific to a single
instance of materialization, and only exist
between calls to Materialize() and
Dematerialize().
I also removed unnecessary references to long-
lived state that really didn't need to be referred
to at all, and also introduced several assert()s
that helped me diagnose a few bugs (fixed too).
llvm-svn: 120778
Add bool member to Communication class indicating whether the
Connection should be closed on receiving an EOF or not. Update the
Connection read to return an EOF status when appropriate. Modify the
Communication class to pass the EOF along or not, and to close the
Connection or not, as appropriate.
llvm-svn: 120723
in C++ methods. There were two fixes involved:
- For an object whose contents are not known, the
expression should be treated as a non-member, and
"this" should have no meaning.
- For a const object, the method should be declared
const as well.
llvm-svn: 120606
Added a ThreadPlanCallUserExpression that differs from ThreadPlanCallFunction in that it holds onto a shared pointer to its ClangUserExpression so that can't go away before the thread plan is done using it.
Fixed the stop message when you hit a breakpoint while running a user expression so it is more obvious what has happened.
llvm-svn: 120386
RegisterContext* - normally this is retrieved from the ExecutionContext's
StackFrame but when we need to evaluate an expression while creating
the stack frame list this can be a little tricky.
Add DW_OP_deref_size, needed for the _sigtramp FDE expression.
Add support for processing DWARF expressions in RegisterContextLLDB.
Update callers to DWARFExpression::Evaluate.
llvm-svn: 119885
perform recursive type lookups, because these are not
required for full type fidelity. We also make the
SelectorTable last for the full lifetime of the Clang
compiler; this was the source of many bugs.
llvm-svn: 119835
that the result of an expression should be coerced to
a specific type. Also made breakpoint conditions pass
in the bool type for this type.
The expression parser ignores this indication for now.
llvm-svn: 119779
changing it to use it. There was an extra parameter added to the static
accessor global user settings controllers that wasn't needed. A bool was being
used as a parameter to the accessor just so it could be used to clean up
the global user settings controller which is now fixed by splitting up the
initialization into the "static void Class::Initialize()", access into the
"static UserSettingsControllerSP & Class::GetSettingsController()", and
cleanup into "static void Class::Terminate()".
Also added initialize and terminate calls to the logging code to avoid issues
when LLDB is shutting down. There were cases after the logging was switched
over to use shared pointers where we could crash if the global destructor
chain was being run and it causes the log to be destroyed and any any logging
occurred.
llvm-svn: 119757
by being able to get the data count and data. Each thread stop reason
has one or more data words that can help describe the stop. To do this
I added:
size_t
SBThread::GetStopReasonDataCount();
uint64_t
SBThread::GetStopReasonDataAtIndex(uint32_t idx);
llvm-svn: 119720
to the DoHalt down in ProcessGDBRemote. I also moved the functionality that
was in ProcessGDBRemote::DoHalt up into Process::Halt so not every class has
to implement a tricky halt/resume on the internal state thread. The
functionality is the same as it was before with two changes:
- when we eat the event we now just reuse the event we consume when the private
state thread is paused and set the interrupted bool on the event if needed
- we also properly update the Process::m_public_state with the state of the
event we consume.
Prior to this, if you issued a "process halt" it would eat the event, not
update the process state, and then produce a new event with the interrupted
bit set and send it. Anyone listening to the event would get the stopped event
with a process that whose state was set to "running".
Fixed debugserver to not have to be spawned with the architecture of the
inferior process. This worked fine for launching processes, but when attaching
to processes by name or pid without a file in lldb, it would fail.
Now debugserver can support multiple architectures for a native debug session
on the current host. This currently means i386 and x86_64 are supported in
the same binary and a x86_64 debugserver can attach to a i386 executable.
This change involved a lot of changes to make sure we dynamically detect the
correct registers for the inferior process.
llvm-svn: 119680
with the Interrupted bit set. Process::HandlePrivateEvent ignores Interrupted events.
DoHalt is changed to ensure that the stop even is processed, and an event with
the Interrupted event is posted. Finally ClangFunction is rationalized to use this
facility so the that Halt is handled more deterministically.
llvm-svn: 119453
ReadThread stuff into the main Process class (out of the Process Plugins).
This has the (intended) side effect of disabling the command line tool
from reading input/commands while the process is running (the input is
directed to the running process rather than to the command interpreter).
llvm-svn: 119329
can too. So now the lldb_private::Variable class has support for this.
Variables now have support for having a basename ("i"), and a mangled name
("_ZN12_GLOBAL__N_11iE"), and a demangled name ("(anonymous namespace)::i").
Nowwhen searching for a variable by name, users might enter the fully qualified
name, or just the basename. So new test functions were added to the Variable
and Mangled classes as:
bool NameMatches (const ConstString &name);
bool NameMatches (const RegularExpression ®ex);
I also modified "ClangExpressionDeclMap::FindVariableInScope" to also search
for global variables that are not in the current file scope by first starting
with the current module, then moving on to all modules.
Fixed an issue in the DWARF parser that could cause a varaible to get parsed
more than once. Now, once we have parsed a VariableSP for a DIE, we cache
the result even if a variable wasn't made so we don't do any re-parsing. Some
DW_TAG_variable DIEs don't have locations, or are missing vital info that
stops a debugger from being able to display anything for it, we parse a NULL
variable shared pointer for these DIEs so we don't keep trying to reparse it.
llvm-svn: 119085
breakpoints on inlined functions by name. This involved fixing the DWARF parser
to correctly back up and parse the concrete function when we find inlined
functions by name, then grabbing any appropriate inlined blocks and returning
symbol contexts with the block filled in. After this was fixed, the breakpoint
by name resolver needed to correctly deal with symbol contexts that had the
inlined block filled in in the symbol contexts.
llvm-svn: 119017
expression. This currently takes waaaayyyyy too much time to evaluate. We will
need to look at the expression parser and find ways to optimize the info we
provide and get this to evaluate quicker. I believe the performance issue is
currently related to us always providing a complete C++ class type when asked
about a C++ class which can cause a lot of information to be pulled since all
classes will be fully created (methods, base classes, members, all their
types). We will need to give the classes back the parser and mark them as
having external sources and get parser (Sema) to query us when it needs more
info. This should bring things up to an acceptable level.
llvm-svn: 118979
cases when getting the clang type:
- need only a forward declaration
- need a clang type that can be used for layout (members and args/return types)
- need a full clang type
This allows us to partially parse the clang types and be as lazy as possible.
The first case is when we just need to declare a type and we will complete it
later. The forward declaration happens only for class/union/structs and enums.
The layout type allows us to resolve the full clang type _except_ if we have
any modifiers on a pointer or reference (both R and L value). In this case
when we are adding members or function args or return types, we only need to
know how the type will be laid out and we can defer completing the pointee
type until we later need it. The last type means we need a full definition for
the clang type.
Did some renaming of some enumerations to get rid of the old "DC" prefix (which
stands for DebugCore which is no longer around).
Modified the clang namespace support to be almost ready to be fed to the
expression parser. I made a new ClangNamespaceDecl class that can carry around
the AST and the namespace decl so we can copy it into the expression AST. I
modified the symbol vendor and symbol file plug-ins to use this new class.
llvm-svn: 118976
needs to use the current pc and current offset in two ways: To
determine which function we are currently executing, and the decide
how much of that function has executed so far. For the former use,
we need to back up the saved pc value by one byte if we're going to
use the correct function's unwind information -- we may be executing
a CALL instruction at the end of a function and the following instruction
belongs to a new function, or we may be looking at unwind information
which only covers the call instruction and not the subsequent instruction.
But when we're talking about deciding which row of an UnwindPlan to
execute, we want to use the actual byte offset in the function, not the
byte offset - 1.
Right now RegisterContextLLDB is tracking both the "real" offset and
an "offset minus one" and different parts of the class have to know
which one to use and they need to be updated/set in tandem. I want
to revisit this at some point.
The second change made in looking up eh_frame information; it was
formerly done by looking for the start address of the function we
are currently executing. But it is possible to have unwind information
for a function which only covers a small section of the function's
address range. In which case looking up by the start pc value may not
find the eh_frame FDE.
The hand-written _sigtramp() unwind info on Mac OS X, which covers
exactly one instruction in the middle of the function, happens to
trigger both of these issues.
I still need to get the UnwindPlan runner to handle arbitrary dwarf
expressions in the FDE but there's a good chance it will be easy to
reuse the DWARFExpression class to do this.
llvm-svn: 118882
logic that supported calling functions with arbitrary
arguments. We use ClangFunction for this, and the
low-level logic is only required to support one or two
pointer arguments.
llvm-svn: 118871
namespaces by name given an optional symbol context. I might end up
dressing up the "clang::NamespaceDecl" into a lldb_private::Namespace
class if we need to do more than is currenlty required of namespaces.
Currently we only need to be able to lookup a namespace by name when
parsing expressions, so I kept it simple for now. The idea here is
even though we are passing around a "clang::NamespaceDecl *", that
we always have it be an opaque pointer (it is forward declared inside
of "lldb/Core/ClangForward.h") and we only use clang::NamespaceDecl
implementations inside of ClangASTContext, or ClangASTType when we need
to extract information from the namespace decl object.
llvm-svn: 118737
comes from by using a virtual function to provide it from the Module's
SymbolVendor by default. This allows the DWARF parser, when being used to
parse DWARF in .o files with a parent DWARF + debug map parser, to get its
type list from the DWARF + debug map parser so when we go and find full
definitions for types (that might come from other .o files), we can use the
type list from the debug map parser. Otherwise we ended up mixing clang types
from one .o file (say a const pointer to a forward declaration "class A") with
the a full type from another .o file. This causes expression parsing, when
copying the clang types from those parsed by the DWARF parser into the
expression AST, to fail -- for good reason. Now all types are created in the
same list.
Also added host support for crash description strings that can be set before
doing a piece of work. On MacOSX, this ties in with CrashReporter support
that allows a string to be dispalyed when the app crashes and allows
LLDB.framework to print a description string in the crash log. Right now this
is hookup up the the CommandInterpreter::HandleCommand() where each command
notes that it is about to be executed, so if we crash while trying to do this
command, we should be able to see the command that caused LLDB to exit. For
all other platforms, this is a nop.
llvm-svn: 118672
Fixed the DWARF plug-in such that when it gets all attributes for a DIE, that
it omits the DW_AT_sibling and DW_AT_declaration when getting attributes
from a DW_AT_abstract_origin or DW_AT_specification DIE.
llvm-svn: 118654
FuncUnwinders object if the eh_frame section was missing
from an objfile. Worked fine on x86_64 but on i386 where
eh_frame is unusual, that resulted in the arch default
UnwindPlan being used all the time instead of picking up
an assembly profile based unwindplan.
llvm-svn: 118467
every external variable reference in the module,
and returning a clean error (instead of letting
LLVM issue a fatal error) if the variable could
not be resolved.
llvm-svn: 118388
and "/private/tmp/a.c". This was done by adding a "mutable bool m_is_resolved;"
member to FileSpec and then modifying the equal operator to check if the
filenames are equal, and if they are, then check the directories. If they are
not equal, then both paths are checked to see if they have been resolved. If
they have been resolved, we resolve the paths in temporary FileSpec objects
and set each of the m_is_resolved bools to try (for lhs and rhs) if the paths
match what is contained in the path. This allows us to do more intelligent
compares without having to resolve all paths found in the debug info (which
can quickly get costly if the files are on remote NFS mounts).
llvm-svn: 118387
don't crash if we disable logging when some code already has a copy of the
logger. Prior to this fix, logs were handed out as pointers and if they were
held onto while a log got disabled, then it could cause a crash. Now all logs
are handed out as shared pointers so this problem shouldn't happen anymore.
We are also using our new shared pointers that put the shared pointer count
and the object into the same allocation for a tad better performance.
llvm-svn: 118319
lldb_private::SharingPtr<A> p = llvm::make_shared<A>(i, j);
Currently up to five constructor arguments are supported and each must be an LValue.
llvm-svn: 118317
fixed them. Added DISALLOW_COPY_AND_ASSIGN to classes that should
not be bitwise copied. Added default initializers for member
variables that weren't being initialized in the ctor. Fixed a few
shadowed local variable mistakes.
llvm-svn: 118240
adding support into lldb_private::Process:
virtual uint32_t
lldb_private::Process::LoadImage (const FileSpec &image_spec,
Error &error);
virtual Error
lldb_private::Process::UnloadImage (uint32_t image_token);
There is a default implementation that should work for both linux and MacOSX.
This ability has also been exported through the SBProcess API:
uint32_t
lldb::SBProcess::LoadImage (lldb::SBFileSpec &image_spec,
lldb::SBError &error);
lldb::SBError
lldb::SBProcess::UnloadImage (uint32_t image_token);
Modified the DynamicLoader plug-in interface to require it to be able to
tell us if it is currently possible to load/unload a shared library:
virtual lldb_private::Error
DynamicLoader::CanLoadImage () = 0;
This way the dynamic loader plug-ins are allows to veto whether we can
currently load a shared library since the dynamic loader might know if it is
currenlty loading/unloading shared libraries. It might also know about the
current host system and know where to check to make sure runtime or malloc
locks are currently being held.
Modified the expression parser to have ClangUserExpression::Evaluate() be
the one that causes the dynamic checkers to be loaded instead of other code
that shouldn't have to worry about it.
llvm-svn: 118227
the end of the list. We had an issue in the MacOSX dynamic loader where if
we had shlibs:
1 - a.out
2 - a.dylib
3 - b.dylib
And then a.dylib got unloaded, we would unload b.dylib due to the assumption
that only shared libraries could come off the end of the list. We now properly
search and find which ones get loaded.
Added a new internal logging category for the "lldb" log channel named "dyld".
This should allow all dynamic loaders to use this as a generic log channel so
we can track shared library loads and unloads in the logs without having to
have each plug-in make up its own logging channel.
llvm-svn: 118147
set breakpoints at the different locations where
an exception could be thrown, so that exceptions
thrown by expressions are properly caught.
llvm-svn: 118142
than just the entire log channel.
Add checks, where appropriate, to make sure a log channel/category has
not been disabled before attempting to write to it.
llvm-svn: 117715
by type ID (the most common type of type lookup).
Changed the API logging a bit to always show the objects in the OBJECT(POINTER)
format so it will be easy to locate all instances of an object or references
to it when looking at logs.
llvm-svn: 117641
which holds the name of a file whose contents are
prefixed to each expression. For example, if the file
~/lldb.prefix.header contains:
typedef unsigned short my_type;
then you can do this:
(lldb) settings set target.expr-prefix '~/lldb.prefix.header'
(lldb) expr sizeof(my_type)
(unsigned long) $0 = 2
When the variable is changed, the corresponding file
is loaded and its contents are fetched into a string
that is stored along with the target. This string
is then passed to each expression and inserted into
it during parsing, like this:
typedef unsigned short my_type;
void
$__lldb_expr(void *$__lldb_arg)
{
sizeof(my_type);
}
llvm-svn: 117627
the breakpoint associated with the (filename, line_number) combo when an arrow is pointing to
a source position using Emacs Grand Unified Debugger library to interact with lldb.
The current implmentation is insufficient in that it only asks the breakpoint whether it is
associated with a breakpoint resolver with FileLine type and whether it matches the (filename, line_number)
combo. There are other breakpoint resolver types whose breakpoint locations can potentially
match the (filename, line_number) combo.
The BreakpointResolver, BreakpointResolverName, BreakpointResolverAddress, and BreakpointResolverFileLine
classes have extra static classof methods to support LLVM style type inquiry through isa, cast, and dyn_cast.
The Breakpoint class has an API method bool GetMatchingFileLine(...) which is invoked from CommandObjectBreak.cpp
to implement the "breakpoint clear" command.
llvm-svn: 117562
all of the calls inlined in the header file for better performance.
Fixed the summary for C string types (array of chars (with any combo if
modifiers), and pointers to chars) work in all cases.
Fixed an issue where a forward declaration to a clang type could cause itself
to resolve itself more than once if, during the resolving of the type itself
it caused something to try and resolve itself again. We now remove the clang
type from the forward declaration map in the DWARF parser when we start to
resolve it and avoid this additional call. This should stop any duplicate
members from appearing and throwing all the alignment of structs, unions and
classes.
llvm-svn: 117437
- Try to reduce logging to one line per function call instead of tw
- Put all arguments & their values into log for calls
- Add 'this' parameter information to function call logging, making it show the appropriate
internal pointer (this.obj, this.sp, this.ap...)
- Clean up some return values
- Remove logging of constructors that construct empty objects
- Change '==>' to '=>' for showing result values...
- Fix various minor bugs
- Add some protected 'get' functions to help getting the internal pointers for the 'this' arguments...
llvm-svn: 117417
it logs the function calls, their arguments and the return values. This is not
complete or polished, but I am committing it now, at the request of someone who
really wants to use it, even though it's not really done. It currently does not
attempt to log all the functions, just the most important ones. I will be
making further adjustments to the API logging code over the next few days/weeks.
(Suggestions for improvements are welcome).
Update the Python build scripts to re-build the swig C++ file whenever
the python-extensions.swig file is modified.
Correct the help for 'log enable' command (give it the correct number & type of
arguments).
llvm-svn: 117349
Not yet enabled as the default unwinder but there are no known
backtrace problems with the code at this point.
Added 'log enable lldb unwind' to help diagnose backtrace problems;
this output needs a little refining but it's a good first step.
eh_frame information is currently read unconditionally - the code
is structured to allow this to be delayed until it's actually needed.
There is a performance hit when you have to parse the eh_frame
information for any largeish executable/library so it's necessary
to avoid if possible.
It's confusing having both the UnwindPlan::RegisterLocation struct
and the RegisterConextLLDB::RegisterLocation struct, I need to rename
one of them.
The writing of registers isn't done in the RegisterConextLLDB subclass
yet; neither is the running of complex DWARF expressions from eh_frame
(e.g. used for _sigtramp on Mac OS X).
llvm-svn: 117256
So the issue here was that we have lldb_private::FileSpec that by default was
always resolving a path when using the:
FileSpec::FileSpec (const char *path);
and in the:
void FileSpec::SetFile(const char *pathname, bool resolve = true);
This isn't what we want in many many cases. One example is you have "/tmp" on
your file system which is really "/private/tmp". You compile code in that
directory and end up with debug info that mentions "/tmp/file.c". Then you
type:
(lldb) breakpoint set --file file.c --line 5
If your current working directory is "/tmp", then "file.c" would be turned
into "/private/tmp/file.c" which won't match anything in the debug info.
Also, it should have been just a FileSpec with no directory and a filename
of "file.c" which could (and should) potentially match any instances of "file.c"
in the debug info.
So I removed the constructor that just takes a path:
FileSpec::FileSpec (const char *path); // REMOVED
You must now use the other constructor that has a "bool resolve" parameter that you must always supply:
FileSpec::FileSpec (const char *path, bool resolve);
I also removed the default parameter to SetFile():
void FileSpec::SetFile(const char *pathname, bool resolve);
And fixed all of the code to use the right settings.
llvm-svn: 116944
optionally specify the tty you want to use if you want to use an existing
terminal window by giving a partial or full path name:
(lldb) process launch --tty=ttys002
This would find the terminal window (or tab on MacOSX) that has ttys002 in its
tty path and use it. If it isn't found, it will use a new terminal window.
llvm-svn: 116878
sockets so the driver doesn't just crash.
Added support for connecting to named sockets (unix IPC sockets) in
ConnectionFileDescriptor.
Modified the Host::LaunchInNewTerminal() for MacOSX to return the process
ID of the inferior process instead of the process ID of the Terminal.app. This
was done by modifying the "darwin-debug" executable to connect to lldb through
a named unix socket which is passed down as an argument. This allows a quick
handshake between "lldb" and "darwin-debug" so we can get the process ID
of the inferior and then attach by process ID and avoid attaching to the
inferior by process name since there could be more than one process with
that name. This still has possible race conditions, those will be fixed
in the near future. This fixes the SIGPIPE issues that were sometimes being
seen when task_for_pid was failing.
llvm-svn: 116792
static bool
Host::GetLLDBPath (lldb::PathType path_type, FileSpec &file_spec);
This will fill in "file_spec" with an appropriate path that is appropriate
for the current Host OS. MacOSX will return paths within the LLDB.framework,
and other unixes will return the paths they want. The current PathType
enums are:
typedef enum PathType
{
ePathTypeLLDBShlibDir, // The directory where the lldb.so (unix) or LLDB mach-o file in LLDB.framework (MacOSX) exists
ePathTypeSupportExecutableDir, // Find LLDB support executable directory (debugserver, etc)
ePathTypeHeaderDir, // Find LLDB header file directory
ePathTypePythonDir // Find Python modules (PYTHONPATH) directory
} PathType;
All places that were finding executables are and python paths are now updated
to use this Host call.
Added another new host call to launch the inferior in a terminal. This ability
will be very host specific and doesn't need to be supported on all systems.
MacOSX currently will create a new .command file and tell Terminal.app to open
the .command file. It also uses the new "darwin-debug" app which is a small
app that uses posix to exec (no fork) and stop at the entry point of the
program. The GDB remote plug-in is almost able launch a process and attach to
it, it currently will spawn the process, but it won't attach to it just yet.
This will let LLDB not have to share the terminal with another process and a
new terminal window will pop up when you launch. This won't get hooked up
until we work out all of the kinks. The new Host function is:
static lldb::pid_t
Host::LaunchInNewTerminal (
const char **argv, // argv[0] is executable
const char **envp,
const ArchSpec *arch_spec,
bool stop_at_entry,
bool disable_aslr);
Cleaned up FileSpec::GetPath to not use strncpy() as it was always zero
filling the entire path buffer.
Fixed an issue with the dynamic checker function where I missed a '$' prefix
that should have been added.
llvm-svn: 116690
Changed all of our synthesized "___clang" functions, types and variables
that get used in expressions over to have a prefix of "$_lldb". Now when we
do name lookups we can easily switch off of the first '$' character to know
if we should look through only our internal (when first char is '$') stuff,
or when we should look through program variables, functions and types.
Converted all of the clang expression code over to using "const ConstString&"
values for names instead of "const char *" since there were many places that
were converting the "const char *" names into ConstString names and them
throwing them away. We now avoid making a lot of ConstString conversions and
benefit from the quick comparisons in a few extra spots.
Converted a lot of code from LLVM coding conventions into LLDB coding
conventions.
llvm-svn: 116634
debug information and you evaluated an expression, a crash would occur as a
result of an unchecked pointer.
Added the ability to get the expression path for a ValueObject. For a rectangle
point child "x" the expression path would be something like: "rect.top_left.x".
This will allow GUI and command lines to get ahold of the expression path for
a value object without having to explicitly know about the hierarchy. This
means the ValueObject base class now has a "ValueObject *m_parent;" member.
All ValueObject subclasses now correctly track their lineage and are able
to provide value expression paths as well.
Added a new "--flat" option to the "frame variable" to allow for flat variable
output. An example of the current and new outputs:
(lldb) frame variable
argc = 1
argv = 0x00007fff5fbffe80
pt = {
x = 2
y = 3
}
rect = {
bottom_left = {
x = 1
y = 2
}
top_right = {
x = 3
y = 4
}
}
(lldb) frame variable --flat
argc = 1
argv = 0x00007fff5fbffe80
pt.x = 2
pt.y = 3
rect.bottom_left.x = 1
rect.bottom_left.y = 2
rect.top_right.x = 3
rect.top_right.y = 4
As you can see when there is a lot of hierarchy it can help flatten things out.
Also if you want to use a member in an expression, you can copy the text from
the "--flat" output and not have to piece it together manually. This can help
when you want to use parts of the STL in expressions:
(lldb) frame variable --flat
argc = 1
argv = 0x00007fff5fbffea8
hello_world._M_dataplus._M_p = 0x0000000000000000
(lldb) expr hello_world._M_dataplus._M_p[0] == '\0'
llvm-svn: 116532
Add missing break statment to case statement in Process::ShouldBroadcastEvent.
Add new command, "process handle" to allow users to control process behavior on
the receipt of various Unix signals (whether the process should stop; whether the
process should be passed the signal; whether the debugger user should be notified
that the signal came in).
llvm-svn: 116430
function. It will inspect NAME and do the following:
- if the name contains '(' or starts with "-[" or "+[" then a full name search
will happen to match full function names with args (C++ demangled names) or
full objective C method prototypes.
- if the name contains "::" and no '(', then it is assumed to be a qualified
function name that is in a namespace or class. For "foo::bar::baz" we will
search for any functions with the basename or method name of "baz", then
filter the results to only those that contain "foo::bar::baz". This allows
setting breakpoint on C++ functions and methods without having to fully
qualify all of the types that would appear in C++ mangled names.
- if the name contains ":" (not "::"), then NAME is assumed to be an ObjC
selector.
_ otherwise, we assume just a plain function basename.
Now that "--name" is our "auto" mode, I introduced the new "--basename" option
("breakpoint set --basename NAME") to allow for function names that aren't
methods or selectors, just basenames. This can also be used to ignore C++
namespaces and class hierarchies for class methods.
Fixed clang enumeration promotion types to be correct.
llvm-svn: 116293
lldb_private::RegularExpression compiles and matches with:
size_t
RegularExpression::GetErrorAsCString (char *err_str,
size_t err_str_max_len) const;
Added the ability to search a variable list for variables whose names match
a regular expression:
size_t
VariableList::AppendVariablesIfUnique (const RegularExpression& regex,
VariableList &var_list,
size_t& total_matches);
Also added the ability to append a variable to a VariableList only if it is
not already in the list:
bool
VariableList::AddVariableIfUnique (const lldb::VariableSP &var_sp);
Cleaned up the "frame variable" command:
- Removed the "-n NAME" option as this is the default way for the command to
work.
- Enable uniqued regex searches on variable names by fixing the "--regex RE"
command to work correctly. It will match all variables that match any
regular expressions and only print each variable the first time it matches.
- Fixed the option type for the "--regex" command to by eArgTypeRegularExpression
instead of eArgTypeCount
llvm-svn: 116178
Added frame relative frame selection to "frame select". You can now select
frames relative to the current frame (which defaults to zero if the current
frame hasn't yet been set for a thread):
The gdb "up" command can be done as:
(lldb) frame select -r 1
The gdb "down" command can be done as:
(lldb) frame select -r -1
Place the following in your ~/.lldbinit file for "up" and "down":
command alias up frame select -r 1
command alias down frame select -r -1
llvm-svn: 116176
Added a new SortOrder enumeration and hooked it up to the "image dump symtab"
command so we can dump symbol tables in the original order, sorted by address,
or sorted by name.
llvm-svn: 116049
if the address comes from a data section.
Fixed an issue that could occur when looking up a symbol that has a zero
byte size where no match would be returned even if there was an exact symbol
match.
Cleaned up the section dump output and added the section type into the output.
llvm-svn: 116017
tricks to get types to resolve. I did this by correctly including the correct
files: stdint.h and all lldb-*.h files first before including the API files.
This allowed me to remove all of the hacks that were in the lldb.swig file
and it also allows all of the #defines in lldb-defines.h and enumerations
in lldb-enumerations.h to appear in the lldb.py module. This will make the
python script code a lot more readable.
Cleaned up the "process launch" command to not execute a "process continue"
command, it now just does what it should have with the internal API calls
instead of executing another command line command.
Made the lldb_private::Process set the state to launching and attaching if
WillLaunch/WillAttach return no error respectively.
llvm-svn: 115902
Temporarily commenting out the deprecated LaunchProcess() method.
SWIG is not able to handle the overloaded functions.
o dotest.py/lldbtest.py:
Add an '-w' option to insert some wait time between consecutive test cases.
o TestClassTypes.py:
Make the breakpoint_creation_by_filespec_python() test method more robust and
more descriptive by printing out a more insightful assert message.
o lldb.swig: Coaches swig to treat StateType as an int type, instead of a C++ class.
llvm-svn: 115899
Move anything that creates a new process into SBTarget. Marked some functions
as deprecated. I will remove them after our new API changes make it through
a build cycle.
llvm-svn: 115854
use the python API that is exposed through SWIG to do some cool stuff.
Also fixed synchronous debugging so that all process control APIs exposed
through the python API will now wait for the process to stop if you set
the async mode to false (see disasm.py).
llvm-svn: 115738
bool ValueObject::GetIsConstant() const;
void ValueObject::SetIsConstant();
This will stop anything from being re-evaluated within the value object so
that constant result value objects can maintain their frozen values without
anything being updated or changed within the value object.
Made it so the ValueObjectConstResult can be constructed with an
lldb_private::Error object to allow for expression results to have errors.
Since ValueObject objects contain error objects, I changed the expression
evaluation in ClangUserExpression from
static Error
ClangUserExpression::Evaluate (ExecutionContext &exe_ctx,
const char *expr_cstr,
lldb::ValueObjectSP &result_valobj_sp);
to:
static lldb::ValueObjectSP
Evaluate (ExecutionContext &exe_ctx, const char *expr_cstr);
Even though expression parsing is borked right now (pending fixes coming from
Sean Callanan), I filled in the implementation for:
SBValue SBFrame::EvaluateExpression (const char *expr);
Modified all expression code to deal with the above changes.
llvm-svn: 115589
results. The clang opaque type for the expression result will be added to the
Target's ASTContext, and the bytes will be stored in a DataBuffer inside
the new object. The class is named: ValueObjectConstResult
Now after an expression is evaluated, we can get a ValueObjectSP back that
contains a ValueObjectConstResult object.
Relocated the value object dumping code into a static function within
the ValueObject class instead of being in the CommandObjectFrame.cpp file
which is what contained the code to dump variables ("frame variables").
llvm-svn: 115578
instance:
settings set frame-format <string>
settings set thread-format <string>
This allows users to control the information that is seen when dumping
threads and frames. The default values are set such that they do what they
used to do prior to changing over the the user defined formats.
This allows users with terminals that can display color to make different
items different colors using the escape control codes. A few alias examples
that will colorize your thread and frame prompts are:
settings set frame-format 'frame #${frame.index}: \033[0;33m${frame.pc}\033[0m{ \033[1;4;36m${module.file.basename}\033[0;36m ${function.name}{${function.pc-offset}}\033[0m}{ \033[0;35mat \033[1;35m${line.file.basename}:${line.number}}\033[0m\n'
settings set thread-format 'thread #${thread.index}: \033[1;33mtid\033[0;33m = ${thread.id}\033[0m{, \033[0;33m${frame.pc}\033[0m}{ \033[1;4;36m${module.file.basename}\033[0;36m ${function.name}{${function.pc-offset}}\033[0m}{, \033[1;35mstop reason\033[0;35m = ${thread.stop-reason}\033[0m}{, \033[1;36mname = \033[0;36m${thread.name}\033[0m}{, \033[1;32mqueue = \033[0;32m${thread.queue}}\033[0m\n'
A quick web search for "colorize terminal output" should allow you to see what
you can do to make your output look like you want it.
The "settings set" commands above can of course be added to your ~/.lldbinit
file for permanent use.
Changed the pure virtual
void ExecutionContextScope::Calculate (ExecutionContext&);
To:
void ExecutionContextScope::CalculateExecutionContext (ExecutionContext&);
I did this because this is a class that anything in the execution context
heirarchy inherits from and "target->Calculate (exe_ctx)" didn't always tell
you what it was really trying to do unless you look at the parameter.
llvm-svn: 115485
arguments are specified in a standardized way, will have a standardized name, and
have functioning help.
The next step is to start writing useful help for all the argument types.
llvm-svn: 115335
command options; makes it easier to ensure that the same type of
argument will have the same name everywhere, hooks up help for command
arguments, so that users can ask for help when they are confused about
what an argument should be; puts in the beginnings of the ability to
do tab-completion for certain types of arguments, allows automatic
syntax help generation for commands with arguments, and adds command
arguments into command options help correctly.
Currently only the breakpoint-id and breakpoint-id-range arguments, in
the breakpoint commands, have been hooked up to use the new mechanism.
The next steps will be to fix the command options arguments to use
this mechanism, and to fix the rest of the regular command arguments
to use this mechanism. Most of the help text is currently missing or
dummy text; this will need to be filled in, and the existing argument
help text will need to be cleaned up a bit (it was thrown in quickly,
mostly for testing purposes).
Help command now works for all argument types, although the help may not
be very helpful yet.
Those commands that take "raw" command strings now indicate it in their
help text.
llvm-svn: 115318
Added the start of Host specific launch services, though it currently isn't
hookup up to anything. We want to be able to launch a process and use the
native launch services to launch an app like it would be launched by the
user double clicking on the app. We also eventually want to be able to run
a command line app in a newly spawned terminal to avoid terminal sharing.
Fixed an issue with the new DWARF forward type declaration stuff. A crasher
was found that was happening when trying to properly expand the forward
declarations.
llvm-svn: 115213
to using Clang to get type sizes. This fixes a bug
where the type size for a double[2] was being wrongly
reported as 8 instead of 16 bytes, causing problems
for IRForTarget.
Also improved logging so that the next bug in this
area will be easier to find.
llvm-svn: 115208
adding methods to C++ and objective C classes. In order to make methods, we
need the function prototype which means we need the arguments. Parsing these
could cause a circular reference that caused an assertion.
Added a new typedef for the clang opaque types which are just void pointers:
lldb::clang_type_t. This appears in lldb-types.h.
This was fixed by enabling struct, union, class, and enum types to only get
a forward declaration when we make the clang opaque qual type for these
types. When they need to actually be resolved, lldb_private::Type will call
a new function in the SymbolFile protocol to resolve a clang type when it is
not fully defined (clang::TagDecl::getDefinition() returns NULL). This allows
us to be a lot more lazy when parsing clang types and keeps down the amount
of data that gets parsed into the ASTContext for each module.
Getting the clang type from a "lldb_private::Type" object now takes a boolean
that indicates if a forward declaration is ok:
clang_type_t lldb_private::Type::GetClangType (bool forward_decl_is_ok);
So function prototypes that define parameters that are "const T&" can now just
parse the forward declaration for type 'T' and we avoid circular references in
the type system.
llvm-svn: 115012
an auto-generated Python function, and pass the stoppoint context frame and
breakpoint location as parameters to the function (named 'frame' and 'bp_loc'),
to be used inside the breakpoint command Python code, if desired.
llvm-svn: 114849
Change default 'set' behavior so that all instance settings for the specified variable will be
updated, unless the "-n" ("--no_override") command options is specified.
llvm-svn: 114808
Added a virtual destructor to ClangUtilityFunction with a body to it cleans
itself up.
Moved our SharingPtr into the lldb_private namespace to keep it easy to make
an exports file that exports only what is needed ("lldb::*").
llvm-svn: 114771
interface in ClangASTContext. Also added two bool returning functions that
indicated if an opaque clang qual type is a CXX class type, and if it is an
ObjC class type.
Objective C classes now will get their methods added lazily as they are
encountered. The reason for this is currently, unlike C++, the
DW_TAG_structure_type and owns the ivars, doesn't not also contain the
member functions. This means when we parse the objective C class interface
we either need to find all functions whose names start with "+[CLASS_NAME"
or "-[CLASS_NAME" and add them all to the class, or when we parse each objective
C function, we slowly add it to the class interface definition. Since objective
C's class doesn't change internal bits according to whether it has certain types
of member functions (like C++ does if it has virtual functions, or if it has
user ctors/dtors), I currently chose to lazily populate the class when each
functions is parsed. Another issue we run into with ObjC method declarations
is the "self" and "_cmd" implicit args are not marked as artificial in the
DWARF (DW_AT_artifical), so we currently have to look for the parameters by
name if we are trying to omit artificial function args if the language of the
compile unit is ObjC or ObjC++.
llvm-svn: 114722
- Sema is now exported (and there was much rejoicing.)
- Storage classes are now centrally defined.
Also fixed some bugs that the new LLVM picked up.
llvm-svn: 114622
into python-extensions.swig, which gets included into lldb.swig, and
adds them back into the classes when swig generates it's C++ file. This
keeps the Python stuff out of the general API classes.
Also fixed a small bug in the copy constructor for SBSymbolContext.
llvm-svn: 114602
whether a given register number is treated as volatile
or not for a given architecture/platform.
approx 450 lines of boilerplate, 50 lines of actual code. :)
llvm-svn: 114537
for C++ classes. Replaced it with a less hacky approach:
- If an expression is defined in the context of a
method of class A, then that expression is wrapped as
___clang_class::___clang_expr(void*) { ... }
instead of ___clang_expr(void*) { ... }.
- ___clang_class is resolved as the type of the target
of the "this" pointer in the method the expression
is defined in.
- When reporting the type of ___clang_class, a method
with the signature ___clang_expr(void*) is added to
that class, so that Clang doesn't complain about a
method being defined without a corresponding
declaration.
- Whenever the expression gets called, "this" gets
looked up, type-checked, and then passed in as the
first argument.
This required the following changes:
- The ABIs were changed to support passing of the "this"
pointer as part of trivial calls.
- ThreadPlanCallFunction and ClangFunction were changed
to support passing of an optional "this" pointer.
- ClangUserExpression was extended to perform the
wrapping described above.
- ClangASTSource was changed to revert the changes
required by the hack.
- ClangExpressionParser, IRForTarget, and
ClangExpressionDeclMap were changed to handle
different manglings of ___clang_expr flexibly. This
meant no longer searching for a function called
___clang_expr, but rather looking for a function whose
name *contains* ___clang_expr.
- ClangExpressionParser and ClangExpressionDeclMap now
remember whether "this" is required, and know how to
look it up as necessary.
A few inheritance bugs remain, and I'm trying to resolve
these. But it is now possible to use "this" as well as
refer implicitly to member variables, when in the proper
context.
llvm-svn: 114384
the parent of Process settings; add 'default-arch' as a
class-wide setting for Target. Replace lldb::GetDefaultArchitecture
with Target::GetDefaultArchitecture & Target::SetDefaultArchitecture.
Add 'use-external-editor' as user setting to Debugger class & update
code appropriately.
Add Error parameter to methods that get user settings, for easier
reporting of bad requests.
Fix various other minor related bugs.
Fix test cases to work with new changes.
llvm-svn: 114352
replacing the "(lldb)" prompt, the "frame #1..." displays when doing
stack backtracing and the "thread #1....". This will allow you to see
exactly the information that you want to see where you want to see it.
This currently isn't hookup up to the prompts yet, but it will be soon.
So what is the format of the prompts? Prompts can contain variables that
have access to the current program state. Variables are text that appears
in between a prefix of "${" and ends with a "}". Some of the interesting
variables include:
// The frame index (0, 1, 2, 3...)
${frame.index}
// common frame registers with generic names
${frame.pc}
${frame.sp}
${frame.fp}
${frame.ra}
${frame.flags}
// Access to any frame registers by name where REGNAME is any register name:
${frame.reg.REGNAME}
// The current compile unit file where the frame is located
${file.basename}
${file.fullpath}
// Function information
${function.name}
${function.pc-offset}
// Process info
${process.file.basename}
${process.file.fullpath}
${process.id}
${process.name}
// Thread info
${thread.id}
${thread.index}
${thread.name}
${thread.queue}
${thread.stop-reason}
// Target information
${target.arch}
// The current module for the current frame (the shared library or executable
// that contains the current frame PC value):
${module.file.basename}
${module.file.fullpath}
// Access to the line entry for where the current frame is when your thread
// is stopped:
${line.file.basename}
${line.file.fullpath}
${line.number}
${line.start-addr}
${line.end-addr}
Many times the information that you might have in your prompt might not be
available and you won't want it to print out if it isn't valid. To take care
of this you can enclose everything that must resolve into a scope. A scope
is starts with '{' and ends with '}'. For example in order to only display
the current file and line number when the information is available the format
would be:
"{ at {$line.file.basename}:${line.number}}"
Broken down this is:
start the scope: "{"
format whose content will only be displayed if all information is available:
"at {$line.file.basename}:${line.number}"
end the scope: "}"
We currently can represent the infomration we see when stopped at a frame:
frame #0: 0x0000000100000e85 a.out`main + 4 at test.c:19
with the following format:
"frame #${frame.index}: ${frame.pc} {${module.file.basename}`}{${function.name}{${function.pc-offset}}{ at ${line.file.basename}:${line.number}}\n"
This breaks down to always print:
"frame #${frame.index}: ${frame.pc} "
only print the module followed by a tick if we have a valid module:
"{${module.file.basename}`}"
print the function name with optional offset:
"{${function.name}{${function.pc-offset}}"
print the line info if it is available:
"{ at ${line.file.basename}:${line.number}}"
then finish off with a newline:
"\n"
Notice you can also put newlines ("\n") and tabs and everything else you
are used to putting in a format string when desensitized with the \ character.
Cleaned up some of the user settings controller subclasses. All of them
do not have any global settings variables and were all implementing stubs
for the get/set global settings variable. Now there is a default version
in UserSettingsController that will do nothing.
llvm-svn: 114306
- All single character options will now be printed together
- Changed all options that contains underscores to contain '-' instead
- Made the help come out a little flatter by showing the long and short
option on the same line.
- Modified the short character for "--ignore-count" options to "-i"
llvm-svn: 114265
accessed by the objects that own the settings. The previous approach wasn't
very usable and made for a lot of unnecessary code just to access variables
that were already owned by the objects.
While I fixed those things, I saw that CommandObject objects should really
have a reference to their command interpreter so they can access the terminal
with if they want to output usaage. Fixed up all CommandObjects to take
an interpreter and cleaned up the API to not need the interpreter to be
passed in.
Fixed the disassemble command to output the usage if no options are passed
down and arguments are passed (all disassebmle variants take options, there
are no "args only").
llvm-svn: 114252
find the hotspots in our code when indexing the DWARF. A combination of
using SmallVector to avoid collection allocations, using fixed form
sizes when possible, and optimizing the hot loops contributed to the
speedup.
llvm-svn: 113961
or a settings prefix, and it will list information about the subset of settings
you requested. Also added tab-completion (now that it takes an optional argument).
llvm-svn: 113952
Added a "bool show_fullpaths" to many more objects that were
previously always dumping full paths.
Fixed a few places where the DWARF was not indexed when we
we needed it to be when making queries. Also fixed an issue
where the DWARF in .o files wasn't searching all .o files
for the types.
Fixed an issue with the output from "image lookup --type <TYPENAME>"
where the name and byte size might not be resolved and might not
display. We now call the accessors so we end up seeing all of the
type info.
llvm-svn: 113951
Added the ability to specify a preference for mangled or demangled to Mangled::GetName.
Changed one place where mangled was prefered in GetName.
The Dynamic loader should look up the target of a stub by mangled name if it exists.
llvm-svn: 113869
expressions. This involved three main changes:
- In ClangUserExpression::ClangUserExpression(),
we now insert the following lines into the
expression:
#define this ___clang_this
#define self ___clang_self
- In ClangExpressionDeclMap::GetDecls(), we
special-case ___clang_(this|self) and instead
look up "this" or "self"
- In ClangASTSource, we introduce the capability
to generate Decls with a different, overridden,
name from the one that was requested, e.g.
this for ___clang_this.
llvm-svn: 113866
to return the correct result.
Fixed "bool Variable::IsInScope (StackFrame *frame)" to return the correct
result when there are no location lists.
Modified the "frame variable" command such that:
- if no arguments are given (dump all frame variables), then we only show
variables that are currently in scope
- if some arguments are given, we show an error if the variable is out of
scope
llvm-svn: 113830
debug map showed that the location lists in the .o files needed some
refactoring in order to work. The case that was failing was where a function
that was in the "__TEXT.__textcoal_nt" in the .o file, and in the
"__TEXT.__text" section in the main executable. This made symbol lookup fail
due to the way we were finding a real address in the debug map which was
by finding the section that the function was in in the .o file and trying to
find this in the main executable. Now the section list supports finding a
linked address in a section or any child sections. After fixing this, we ran
into issue that were due to DWARF and how it represents locations lists.
DWARF makes a list of address ranges and expressions that go along with those
address ranges. The location addresses are expressed in terms of a compile
unit address + offset. This works fine as long as nothing moves around. When
stuff moves around and offsets change between the remapped compile unit base
address and the new function address, then we can run into trouble. To deal
with this, we now store supply a location list slide amount to any location
list expressions that will allow us to make the location list addresses into
zero based offsets from the object that owns the location list (always a
function in our case).
With these fixes we can now re-link random address ranges inside the debugger
for use with our DWARF + debug map, incremental linking, and more.
Another issue that arose when doing the DWARF in the .o files was that GCC
4.2 emits a ".debug_aranges" that only mentions functions that are externally
visible. This makes .debug_aranges useless to us and we now generate a real
address range lookup table in the DWARF parser at the same time as we index
the name tables (that are needed because .debug_pubnames is just as useless).
llvm-gcc doesn't generate a .debug_aranges section, though this could be
fixed, we aren't going to rely upon it.
Renamed a bunch of "UINT_MAX" to "UINT32_MAX".
llvm-svn: 113829
- If you put a semicolon at the end of an expression,
this no longer causes the expression parser to
error out. This was a two-part fix: first,
ClangExpressionDeclMap::Materialize now handles
an empty struct (such as when there is no return
value); second, ASTResultSynthesizer walks backward
from the end of the ASTs until it reaches something
that's not a NullStmt.
- ClangExpressionVariable now properly byte-swaps when
printing itself.
- ClangUtilityFunction now cleans up after itself when
it's done compiling itself.
- Utility functions can now use external functions just
like user expressions.
- If you end your expression with a statement that does
not return a value, the expression now runs correctly
anyway.
Also, added the beginnings of an Objective-C object
validator function, which is neither installed nor used
as yet.
llvm-svn: 113789
union, or class that contained an enumeration type. When I was creating
the clang enumeration decl, I wasn't calling "EnumDecl::setIntegerType (QualType)"
which means that if the enum decl was ever asked to figure out it's bit width
(getTypeInfo()) it would crash. We didn't run into this with enum types that
weren't inside classes because the DWARF already told us how big the type was
and when we printed an enum we would never need to calculate the size, we
would use the pre-cached byte size we got from the DWARF. When the enum was
in a struct/union/class and we tried to layout the struct, the layout code
would attempt to get the type info and segfault.
llvm-svn: 113729
Fixed an issue where LLDB would fail to set a breakpoint by
file and line if the DWARF line table has multiple file entries
in the support files for a source file.
llvm-svn: 113721
They will now be represented as:
eSymbolTypeFunction: eSymbolTypeCode with IsDebug() == true
eSymbolTypeGlobal: eSymbolTypeData with IsDebug() == true and IsExternal() == true
eSymbolTypeStatic: eSymbolTypeData with IsDebug() == true and IsExternal() == false
This simplifies the logic when dealing with symbols and allows for symbols
to be coalesced into a single symbol most of the time.
Enabled the minimal symbol table for mach-o again after working out all the
kinks. We now get nice concise symbol tables and debugging with DWARF in the
.o files with a debug map in the binary works well again. There were issues
where the SymbolFileDWARFDebugMap symbol file parser was using symbol IDs and
symbol indexes interchangeably. Now that all those issues are resolved
debugging is working nicely.
llvm-svn: 113678
SBValue to access it. For now this is just the result of ObjC NSPrintForDebugger,
but could be extended. Also store the results of the ObjC Object Printer in a
Stream, not a ConstString.
llvm-svn: 113660
up a seciton offset address (SBAddress) within a module that returns a
symbol context (SBSymbolContext). Also added a SBSymbolContextList in
preparation for adding find/lookup APIs that can return multiple results.
Added a lookup example code that shows how to do address lookups.
llvm-svn: 113599
command for a breakpoint, for example:
(lldb) breakpoint command add -p 1 "conditional_break.stop_if_called_from_a()"
The ScriptInterpreter interface has an extra method:
/// Set a one-liner as the callback for the breakpoint command.
virtual void
SetBreakpointCommandCallback (CommandInterpreter &interpreter,
BreakpointOptions *bp_options,
const char *oneliner);
to accomplish the above.
Also added a test case to demonstrate lldb's use of breakpoint callback command
to stop at function c() only when its immediate caller is function a(). The
following session shows the user entering the following commands:
1) command source .lldb (set up executable, breakpoint, and breakpoint command)
2) run (the callback mechanism will skip two breakpoints where c()'s immeidate caller is not a())
3) bt (to see that indeed c()'s immediate caller is a())
4) c (to continue and finish the program)
test/conditional_break $ ../../build/Debug/lldb
(lldb) command source .lldb
Executing commands in '.lldb'.
(lldb) file a.out
Current executable set to 'a.out' (x86_64).
(lldb) breakpoint set -n c
Breakpoint created: 1: name = 'c', locations = 1
(lldb) script import sys, os
(lldb) script sys.path.append(os.path.join(os.getcwd(), os.pardir))
(lldb) script import conditional_break
(lldb) breakpoint command add -p 1 "conditional_break.stop_if_called_from_a()"
(lldb) run
run
Launching '/Volumes/data/lldb/svn/trunk/test/conditional_break/a.out' (x86_64)
(lldb) Checking call frames...
Stack trace for thread id=0x2e03 name=None queue=com.apple.main-thread:
frame #0: a.out`c at main.c:39
frame #1: a.out`b at main.c:34
frame #2: a.out`a at main.c:25
frame #3: a.out`main at main.c:44
frame #4: a.out`start
c called from b
Continuing...
Checking call frames...
Stack trace for thread id=0x2e03 name=None queue=com.apple.main-thread:
frame #0: a.out`c at main.c:39
frame #1: a.out`b at main.c:34
frame #2: a.out`main at main.c:47
frame #3: a.out`start
c called from b
Continuing...
Checking call frames...
Stack trace for thread id=0x2e03 name=None queue=com.apple.main-thread:
frame #0: a.out`c at main.c:39
frame #1: a.out`a at main.c:27
frame #2: a.out`main at main.c:50
frame #3: a.out`start
c called from a
Stopped at c() with immediate caller as a().
a(1) returns 4
b(2) returns 5
Process 20420 Stopped
* thread #1: tid = 0x2e03, 0x0000000100000de8 a.out`c + 7 at main.c:39, stop reason = breakpoint 1.1, queue = com.apple.main-thread
36
37 int c(int val)
38 {
39 -> return val + 3;
40 }
41
42 int main (int argc, char const *argv[])
(lldb) bt
bt
thread #1: tid = 0x2e03, stop reason = breakpoint 1.1, queue = com.apple.main-thread
frame #0: 0x0000000100000de8 a.out`c + 7 at main.c:39
frame #1: 0x0000000100000dbc a.out`a + 44 at main.c:27
frame #2: 0x0000000100000e4b a.out`main + 91 at main.c:50
frame #3: 0x0000000100000d88 a.out`start + 52
(lldb) c
c
Resuming process 20420
Process 20420 Exited
a(3) returns 6
(lldb)
llvm-svn: 113596
The Unwind and RegisterContext subclasses still need
to be finished; none of this code is used by lldb at
this point (unless you call into it by hand).
The ObjectFile class now has an UnwindTable object.
The UnwindTable object has a series of FuncUnwinders
objects (Function Unwinders) -- one for each function
in that ObjectFile we've backtraced through during this
debug session.
The FuncUnwinders object has a few different UnwindPlans.
UnwindPlans are a generic way of describing how to find
the canonical address of a given function's stack frame
(the CFA idea from DWARF/eh_frame) and how to restore the
caller frame's register values, if they have been saved
by this function.
UnwindPlans are created from different sources. One source is the
eh_frame exception handling information generated by the compiler
for unwinding an exception throw. Another source is an assembly
language inspection class (UnwindAssemblyProfiler, uses the Plugin
architecture) which looks at the instructions in the funciton
prologue and describes the stack movements/register saves that are
done.
Two additional types of UnwindPlans that are worth noting are
the "fast" stack UnwindPlan which is useful for making a first
pass over a thread's stack, determining how many stack frames there
are and retrieving the pc and CFA values for each frame (enough
to create StackFrameIDs). Only a minimal set of registers is
recovered during a fast stack walk.
The final UnwindPlan is an architectural default unwind plan.
These are provided by the ArchDefaultUnwindPlan class (which uses
the plugin architecture). When no symbol/function address range can
be found for a given pc value -- when we have no eh_frame information
and when we don't have a start address so we can't examine the assembly
language instrucitons -- we have to make a best guess about how to
unwind. That's when we use the architectural default UnwindPlan.
On x86_64, this would be to assume that rbp is used as a stack pointer
and we can use that to find the caller's frame pointer and pc value.
It's a last-ditch best guess about how to unwind out of a frame.
There are heuristics about when to use one UnwindPlan versues the other --
this will all happen in the still-begin-written UnwindLLDB subclass of
Unwind which runs the UnwindPlans.
llvm-svn: 113581
Make get/set variable at the debugger level always set the particular debugger's instance variables rather than
the default variables.
llvm-svn: 113474
pending instance uses the specified instance name rather than creating a new one; add brackets to instance names
when searching for and removing pending instances.
llvm-svn: 113370
member variables.
Modified lldb_private::Module to have an accessor that can be used to tell if
a module is a dynamic link editor (dyld) as there are functions in dyld on
darwin that mirror functions in libc (malloc, free, etc) that should not
be used when doing function lookups by name in expressions if there are more
than one match when looking up functions by name.
llvm-svn: 113313
symbol tables. Minimal symbol tables enable us to merge two symbols, one
debug symbol and one linker symbol, into a single symbol that can carry
just as much information and will avoid duplicate symbols in the symbol
table.
llvm-svn: 113223
parent, sibling and first child block, and access to the
inline function information.
Added an accessor the StackFrame:
Block * lldb_private::StackFrame::GetFrameBlock();
LLDB represents inline functions as lexical blocks that have
inlined function information in them. The function above allows
us to easily get the top most lexical block that defines a stack
frame. When there are no inline functions in function, the block
returned ends up being the top most block for the function. When
the PC is in an inlined funciton for a frame, this will return the
first parent block that has inlined function information. The
other accessor: StackFrame::GetBlock() will return the deepest block
that matches the frame's PC value. Since most debuggers want to display
all variables in the current frame, the Block returned by
StackFrame::GetFrameBlock can be used to retrieve all variables for
the current frame.
Fixed the lldb_private::Block::DumpStopContext(...) to properly
display inline frames a block should display all of its inlined
functions. Prior to this fix, one of the call sites was being skipped.
This is a separate code path from the current default where inlined
functions get their own frames.
Fixed an issue where a block would always grab variables for any
child inline function blocks.
llvm-svn: 113195
handles user settable internal variables (the equivalent of set/show
variables in gdb). In addition to the basic infrastructure (most of
which is defined in UserSettingsController.{h,cpp}, there are examples
of two classes that have been set up to contain user settable
variables (the Debugger and Process classes). The 'settings' command
has been modified to be a command-subcommand structure, and the 'set',
'show' and 'append' commands have been moved into this sub-commabnd
structure. The old StateVariable class has been completely replaced
by this, and the state variable dictionary has been removed from the
Command Interpreter. Places that formerly accessed the state variable
mechanism have been modified to access the variables in this new
structure instead (checking the term-width; getting/checking the
prompt; etc.)
Variables are attached to classes; there are two basic "flavors" of
variables that can be set: "global" variables (static/class-wide), and
"instance" variables (one per instance of the class). The whole thing
has been set up so that any global or instance variable can be set at
any time (e.g. on start up, in your .lldbinit file), whether or not
any instances actually exist (there's a whole pending and default
values mechanism to help deal with that).
llvm-svn: 113041
Added extra logging for stepping.
Fixed an issue where cached stack frame data could be lost between runs when
the thread plans read a stack frame.
llvm-svn: 112973
might dump file paths that allows the dumping of full paths or just the
basenames. Switched the stack frame dumping code to use just the basenames for
the files instead of the full path.
Modified the StackID class to no rely on needing the start PC for the current
function/symbol since we can use the SymbolContextScope to uniquely identify
that, unless there is no symbol context scope. In that case we can rely upon
the current PC value. This saves the StackID from having to calculate the
start PC when the StackFrame::GetStackID() accessor is called.
Also improved the StackID less than operator to correctly handle inlined stack
frames in the same stack.
llvm-svn: 112867
function statics, file globals and static variables) that a frame contains.
The StackFrame objects can give out ValueObjects instances for
each variable which allows us to track when a variable changes and doesn't
depend on variable names when getting value objects.
StackFrame::GetVariableList now takes a boolean to indicate if we want to
get the frame compile unit globals and static variables.
The value objects in the stack frames can now correctly track when they have
been modified. There are a few more tweaks needed to complete this work. The
biggest issue is when stepping creates partial stacks (just frame zero usually)
and causes previous stack frames not to match up with the current stack frames
because the previous frames only has frame zero. We don't really want to
require that all previous frames be complete since stepping often must check
stack frames to complete their jobs. I will fix this issue tomorrow.
llvm-svn: 112800
expressions. If an expression dereferences an
invalid pointer, there will still be a crash -
just now the crash will be in the function
___clang_valid_pointer_check().
llvm-svn: 112785
expressions. Values used by the expression are
checked by validation functions which cause the
program to crash if the values are unsafe.
Major changes:
- Added IRDynamicChecks.[ch], which contains the
core code related to this feature
- Modified CommandObjectExpression to install the
validator functions into the target process.
- Added an accessor to Process that gets/sets the
helper functions
llvm-svn: 112690
persistent variables were staying around too long.
This caused the following problem:
- A persistent result variable is created for the
result of an expression. The pointer to the
corresponding Decl is stored in the variable.
- The persistent variable is looked up during
struct generation (correctly) using its Decl.
- Another expression defines a new result variable
which happens to have a Decl in the same place
as the original result variable.
- The persistent variable is looked up during
struct generation using its Decl, but the old
result variable appears first in the list and
has the same Decl pointer.
The fix is to destroy parser-specific data when
it is no longer valid.
Also improved some logging as I diagnosed the
bug.
llvm-svn: 112540
storing pointers to objects inside a std::vector.
These objects can move around as the std::vector
changes, invalidating the pointers.
llvm-svn: 112527
documentation. Symbol now inherits from the symbol
context scope so that the StackID can use a "SymbolContextScope *"
instead of a blockID (which could have been the same as some other
blockID from another symbol file).
Modified the stacks that are created on subsequent stops to reuse
the previous stack frame objects which will allow for some internal
optimization using pointer comparisons during stepping.
llvm-svn: 112495
debugger to insert self-contained functions for use by
expressions (mainly for error-checking).
In order to support detecting whether a crash occurred
in one of these helpers -- currently our preferred way
of reporting that an error-check failed -- added a bit
of support for getting the extent of a JITted function
in addition to just its base.
llvm-svn: 112324
o Fixed a crasher when getting it via SBTarget.GetExecutable().
>>> filespec = target.GetExecutable()
Segmentation fault
o And renamed SBFileSpec::GetFileName() to GetFilename() to be consistent with FileSpec::GetFilename().
llvm-svn: 112308
swaps on the variable list, value object list, and disassembly. This avoids
us having to try and update frame indexes and other things that were getting
out of sync.
llvm-svn: 112301
instead of trying to maintain the real frame list (unwind frames) and an
inline frame list. The information is cheap to produce when we already have
looked up a block and was making stack frame uniquing difficult when trying
to use the previous stack when making the current stack.
We now maintain the previous value object lists for common frames between
a previous and current frames so we will be able to tell when variable values
change.
llvm-svn: 112277
The goal is to separate the parser's data from the data
belonging to the parser's clients. This allows clients
to use the parser to obtain (for example) a JIT compiled
function or some DWARF code, and then discard the parser
state.
Previously, parser state was held in ClangExpression and
used liberally by ClangFunction, which inherited from
ClangExpression. The main effects of this refactoring
are:
- reducing ClangExpression to an abstract class that
declares methods that any client must expose to the
expression parser,
- moving the code specific to implementing the "expr"
command from ClangExpression and
CommandObjectExpression into ClangUserExpression,
a new class,
- moving the common parser interaction code from
ClangExpression into ClangExpressionParser, a new
class, and
- making ClangFunction rely only on
ClangExpressionParser and not depend on the
internal implementation of ClangExpression.
Side effects include:
- the compiler interaction code has been factored
out of ClangFunction and is now in an AST pass
(ASTStructExtractor),
- the header file for ClangFunction is now fully
documented,
- several bugs that only popped up when Clang was
deallocated (which never happened, since the
lifetime of the compiler was essentially infinite)
are now fixed, and
- the developer-only "call" command has been
disabled.
I have tested the expr command and the Objective-C
step-into code, which use ClangUserExpression and
ClangFunction, respectively, and verified that they
work. Please let me know if you encounter bugs or
poor documentation.
llvm-svn: 112249
code stepping. Also we now store the stack frames for the current and previous
stops in the thread in std::auto_ptr objects. When we create a thread stack
frame list we pass the previous frame into it so it can re-use the frames
and maintain will allow for variable changes to be detected. I will implement
the stack frame reuse next.
llvm-svn: 112152
functionality into StackFrameList. This will allow us to copy the previous
stack backtrace from the previous stop into another variable so we can re-use
as much as possible from the previous stack backtrace.
llvm-svn: 112007
has inlined functions that all started at the same address, then the inlined
backtrace would not produce correct stack frames.
Also cleaned up and inlined a lot of stuff in lldb_private::Address.
Added a function to StackFrame to detect if the frame is a concrete frame so
we can detect the difference between actual frames and inlined frames.
llvm-svn: 111989