Commit Graph

20 Commits

Author SHA1 Message Date
Matthias Braun 165d467125 MachineCopyPropagation: Remove the copies instead of using KILL instructions.
For some history here see the commit messages of r199797 and r169060.

The original intent was to fix cases like:

%EAX<def> = COPY %ECX<kill>, %RAX<imp-def>
%RCX<def> = COPY %RAX<kill>

where simply removing the copies would have RCX undefined as in terms of
machine operands only the ECX part of it is defined. The machine
verifier would complain about this so 169060 changed such COPY
instructions into KILL instructions so some super-register imp-defs
would be preserved. In r199797 it was finally decided to always do this
regardless of super-register defs.

But this is wrong, consider:
R1 = COPY R0
...
R0 = COPY R1
getting changed to:
R1 = KILL R0
...
R0 = KILL R1

It now looks like R0 dies at the first KILL and won't be alive until the
second KILL, while in reality R0 is alive and must not change in this
part of the program.

As this only happens after register allocation there is not much code
still performing liveness queries so the issue was not noticed.  In fact
I didn't manage to create a testcase for this, without unrelated changes
I am working on at the moment.

The fix is simple: As of r223896 the MachineVerifier allows reads from
partially defined registers, so the whole transforming COPY->KILL thing
is not necessary anymore. This patch also changes a similar (but more
benign case as the def and src are the same register) case in the
VirtRegRewriter.

Differential Revision: http://reviews.llvm.org/D10117

llvm-svn: 238588
2015-05-29 18:19:25 +00:00
Simon Pilgrim aedd3c5160 line endings fix
llvm-svn: 235800
2015-04-25 12:12:43 +00:00
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
Simon Pilgrim d8820ae70c Reapplied D7816 & rL230177 & rL230278 - with an additional fix toensure that the smallest build vector input scalar type is always used. Additional (crash) test cases already committed.
llvm-svn: 230388
2015-02-24 22:08:56 +00:00
Eric Christopher af48495130 Revert:
Author: Simon Pilgrim <llvm-dev@redking.me.uk>
Date:   Mon Feb 23 23:04:28 2015 +0000

    Fix based on post-commit comment on D7816 & rL230177 - BUILD_VECTOR operand truncation was using the the BV's output scalar type instead of the input type.

and

Author: Simon Pilgrim <llvm-dev@redking.me.uk>
Date:   Sun Feb 22 18:17:28 2015 +0000

    [DagCombiner] Generalized BuildVector Vector Concatenation

    The CONCAT_VECTORS combiner pass can transform the concat of two BUILD_VECTOR nodes into a single BUILD_VECTOR node.

    This patch generalises this to support any number of BUILD_VECTOR nodes, and also permits UNDEF nodes to be included as well.

    This was noticed as AVX vec128 -> vec256 canonicalization sometimes creates a CONCAT_VECTOR with a real vec128 lower and an vec128 UNDEF upper.

    Differential Revision: http://reviews.llvm.org/D7816

as the root cause of PR22678 which is causing an assertion inside the DAG combiner.

I'll follow up to the main thread as well.

llvm-svn: 230358
2015-02-24 19:11:00 +00:00
Simon Pilgrim 4e30d9b6d8 [DagCombiner] Generalized BuildVector Vector Concatenation
The CONCAT_VECTORS combiner pass can transform the concat of two BUILD_VECTOR nodes into a single BUILD_VECTOR node.

This patch generalises this to support any number of BUILD_VECTOR nodes, and also permits UNDEF nodes to be included as well.

This was noticed as AVX vec128 -> vec256 canonicalization sometimes creates a CONCAT_VECTOR with a real vec128 lower and an vec128 UNDEF upper.

Differential Revision: http://reviews.llvm.org/D7816

llvm-svn: 230177
2015-02-22 18:17:28 +00:00
Simon Pilgrim fccc3ab741 [X86][SSE] Added shuffle based integer zero extension tests.
llvm-svn: 230145
2015-02-21 21:25:16 +00:00
Michael Kuperstein ff5acaf50c [X86] Combine vector anyext + and into a vector zext
Vector zext tends to get legalized into a vector anyext, represented as a vector shuffle with an undef vector + a bitcast, that gets ANDed with a mask that zeroes the undef elements.
Combine this into an explicit shuffle with a zero vector instead. This allows shuffle lowering to match it as a zext, instead of matching it as an anyext and emitting an explicit AND.
This combine only covers a subset of the cases, but it's a start.

Differential Revision: http://reviews.llvm.org/D7666

llvm-svn: 229480
2015-02-17 08:22:51 +00:00
Chandler Carruth 1c60d18aee [x86] Update some tests with the latest version of my script and llc.
This mostly adds some shuffle decode comments and cleans up indentation.

llvm-svn: 229296
2015-02-15 09:26:15 +00:00
Ahmed Bougacha e892d13d90 [CodeGen] Add hook/combine to form vector extloads, enabled on X86.
The combine that forms extloads used to be disabled on vector types,
because "None of the supported targets knows how to perform load and
sign extend on vectors in one instruction."

That's not entirely true, since at least SSE4.1 X86 knows how to do
those sextloads/zextloads (with PMOVS/ZX).
But there are several aspects to getting this right.
First, vector extloads are controlled by a profitability callback.
For instance, on ARM, several instructions have folded extload forms,
so it's not always beneficial to create an extload node (and trying to
match extloads is a whole 'nother can of worms).

The interesting optimization enables folding of s/zextloads to illegal
(splittable) vector types, expanding them into smaller legal extloads.

It's not ideal (it introduces some legalization-like behavior in the
combine) but it's better than the obvious alternative: form illegal
extloads, and later try to split them up.  If you do that, you might
generate extloads that can't be split up, but have a valid ext+load
expansion.  At vector-op legalization time, it's too late to generate
this kind of code, so you end up forced to scalarize. It's better to
just avoid creating egregiously illegal nodes.

This optimization is enabled unconditionally on X86.

Note that the splitting combine is happy with "custom" extloads. As
is, this bypasses the actual custom lowering, and just unrolls the
extload. But from what I've seen, this is still much better than the
current custom lowering, which does some kind of unrolling at the end
anyway (see for instance load_sext_4i8_to_4i64 on SSE2, and the added
FIXME).

Also note that the existing combine that forms extloads is now also
enabled on legal vectors.  This doesn't have a big effect on X86
(because sext+load is usually combined to sext_inreg+aextload).
On ARM it fires on some rare occasions; that's for a separate commit.

Differential Revision: http://reviews.llvm.org/D6904

llvm-svn: 228325
2015-02-05 18:31:02 +00:00
Ahmed Bougacha 2d80ea1939 [X86] Cleanup tabs in test vector-zext.ll. NFC.
Some tests have tabs, some don't.
In vector-[sz]ext.ll, space wins (well duh!).

llvm-svn: 227615
2015-01-30 21:41:28 +00:00
Craig Topper 0271d10d35 [x86] Change u8imm operands to always print as unsigned. This makes shuffle masks and the like make way more sense.
llvm-svn: 226902
2015-01-23 08:00:59 +00:00
Ahmed Bougacha 8b54286d1c [X86] Refactor PMOV[SZ]Xrm to add missing AVX2 patterns.
Most patterns will go away once the extload legalization changes land.

Differential Revision: http://reviews.llvm.org/D6125

llvm-svn: 223567
2014-12-06 01:31:07 +00:00
Chandler Carruth 0c922fcec5 [x86] Start improving the matching of unpck instructions based on test
cases from Halide folks. This initial step was extracted from
a prototype change by Clay Wood to try and address regressions found
with Halide and the new vector shuffle lowering.

llvm-svn: 221779
2014-11-12 10:05:18 +00:00
Chandler Carruth ce6947d4cf [x86] Clean up a bunch of vector shuffle tests with my script. Notably,
removes windows line endings and other noise. This is in prelude to
making substantive changes to these tests.

llvm-svn: 221776
2014-11-12 09:17:15 +00:00
Chandler Carruth acecdc0211 [x86] Fix PR21139, one of the last remaining regressions found in the
new vector shuffle lowering.

This is loosely based on a patch by Marius Wachtler to the PR (thanks!).
I refactored it a bi to use std::count_if and a mutable array ref but
the core idea was exactly right. I also added some direct testing of
this case.

I believe PR21137 is now the only remaining regression.

llvm-svn: 219081
2014-10-05 12:07:34 +00:00
Chandler Carruth 99627bfbff [x86] Enable the new vector shuffle lowering by default.
Update the entire regression test suite for the new shuffles. Remove
most of the old testing which was devoted to the old shuffle lowering
path and is no longer relevant really. Also remove a few other random
tests that only really exercised shuffles and only incidently or without
any interesting aspects to them.

Benchmarking that I have done shows a few small regressions with this on
LNT, zero measurable regressions on real, large applications, and for
several benchmarks where the loop vectorizer fires in the hot path it
shows 5% to 40% improvements for SSE2 and SSE3 code running on Sandy
Bridge machines. Running on AMD machines shows even more dramatic
improvements.

When using newer ISA vector extensions the gains are much more modest,
but the code is still better on the whole. There are a few regressions
being tracked (PR21137, PR21138, PR21139) but by and large this is
expected to be a win for x86 generated code performance.

It is also more correct than the code it replaces. I have fuzz tested
this extensively with ISA extensions up through AVX2 and found no
crashes or miscompiles (yet...). The old lowering had a few miscompiles
and crashers after a somewhat smaller amount of fuzz testing.

There is one significant area where the new code path lags behind and
that is in AVX-512 support. However, there was *extremely little*
support for that already and so this isn't a significant step backwards
and the new framework will probably make it easier to implement lowering
that uses the full power of AVX-512's table-based shuffle+blend (IMO).

Many thanks to Quentin, Andrea, Robert, and others for benchmarking
assistance. Thanks to Adam and others for help with AVX-512. Thanks to
Hal, Eric, and *many* others for answering my incessant questions about
how the backend actually works. =]

I will leave the old code path in the tree until the 3 PRs above are at
least resolved to folks' satisfaction. Then I will rip it (and 1000s of
lines of code) out. =] I don't expect this flag to stay around for very
long. It may not survive next week.

llvm-svn: 219046
2014-10-04 03:52:55 +00:00
Chandler Carruth c1bb0e84bc [x86] Switch some of the new consolidated vector tests to use
a bare-metal triple and have nice BB labels, etc.

No significant change here, just tidying up to have a consistent set of
OS-agnostic vector functionality here.

llvm-svn: 218854
2014-10-02 06:52:19 +00:00
Chandler Carruth bbbdb9f0ee [x86] Teach both sext and zext vector tests to cover a nice wide range
of architectures: SSE2, SSSE3, SSE4.1, AVX, and AVX2.

Unfortunately, this exposses the absolute horror of the code we generate
for many of these patterns. Anyone wanting to familiarize themselves
with the x86 backend and improve performance could do a lot of good
sitting down and making these test cases not look so terrible. While the
new vector shuffle code I'm working on well help some, it won't fix all
of the crimes here.

llvm-svn: 218807
2014-10-01 20:41:36 +00:00
Chandler Carruth c66ea0fc12 [x86] Rename avx-{s,z}ext.ll to vector-{s,z}ext.ll.
These tests are far and away the best sext and zext tests we have for
vectors. I'm going to merge the other similar tests into them and expand
the ISA coverage.

llvm-svn: 218800
2014-10-01 20:30:30 +00:00