All changes were made by the following bash script:
find test/CodeGen -name "*.ll" | \
while read NAME; do
echo "$NAME"
grep -q "^; *RUN: *llc.*debug" $NAME && continue
grep -q "^; *RUN:.*llvm-objdump" $NAME && continue
grep -q "^; *RUN: *opt.*" $NAME && continue
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\([A-Za-z0-9_-]*\)\([A-Za-z0-9_-]*\):\( *\)$FUNC[:]* *\$/;\1\2-LABEL:\3$FUNC:/g" $TEMP
done
sed -i '' "s/;\(.*\)-LABEL-LABEL:/;\1-LABEL:/" $TEMP
sed -i '' "s/;\(.*\)-NEXT-LABEL:/;\1-NEXT:/" $TEMP
sed -i '' "s/;\(.*\)-NOT-LABEL:/;\1-NOT:/" $TEMP
sed -i '' "s/;\(.*\)-DAG-LABEL:/;\1-DAG:/" $TEMP
mv $TEMP $NAME
done
This script catches a superset of the cases caught by the script associated with commit r186280. It initially found some false positives due to unusual constructs in a minority of tests; all such cases were disambiguated first in commit r186621.
llvm-svn: 186624
When debugging performance regressions we often ask ourselves if the regression
that we see is due to poor isel/sched/ra or due to some micro-architetural
problem. When comparing two code sequences one good way to rule out front-end
bottlenecks (and other the issues) is to force code alignment. This pass adds
a flag that forces the alignment of all of the basic blocks in the program.
llvm-svn: 179353