This instruction writes a block of allocation tags
and stores zero to the associated data locations.
It differs from STGM by 1 bit and has the same
arguments.
The specification can be found here:
https://developer.arm.com/docs/ddi0596/c
Differential Revision: https://reviews.llvm.org/D60065
llvm-svn: 357397
This patch replaces the addition of VK_RISCV_CALL in RISCVMCCodeEmitter by
creating the RISCVMCExpr when tail/call are parsed, or in the codegen case
when the callee symbols are created.
This required adding a new CallSymbol operand to allow only adding
VK_RISCV_CALL to tail/call instructions.
This patch will allow further expansion of parsing and codegen to easily
include PLT symbols which must generate the R_RISCV_CALL_PLT relocation.
Differential Revision: https://reviews.llvm.org/D55560
Patch by Lewis Revill.
llvm-svn: 357396
The STGV/LDGV instructions were replaced with
STGM/LDGM. The encodings remain the same but there
is no longer writeback so there are no unpredictable
encodings to check for.
The specfication can be found here:
https://developer.arm.com/docs/ddi0596/c
Differential Revision: https://reviews.llvm.org/D60064
llvm-svn: 357395
This patch adds an implementation of a PC-relative addressing sequence to be
used when -mcmodel=medium is specified. With absolute addressing, a 'medium'
codemodel may cause addresses to be out of range. This is because while
'medium' implies a 2 GiB addressing range, this 2 GiB can be at any offset as
opposed to 'small', which implies the first 2 GiB only.
Note that LLVM/Clang currently specifies code models differently to GCC, where
small and medium imply the same functionality as GCC's medlow and medany
respectively.
Differential Revision: https://reviews.llvm.org/D54143
Patch by Lewis Revill.
llvm-svn: 357393
The latest version of the MTE spec added a system
register 'GMID_EL1'. It contains the block size used
by the LDGM and STGM instructions and is read only.
The specification can be found here:
https://developer.arm.com/docs/ddi0596/c
llvm-svn: 357392
Summary:
This fixes PR41270.
The recursive function evaluateInDifferentElementOrder expects to be called
on a vector Value, so when we call it on a vector GEP's arguments, we must
first check that the argument is indeed a vector.
Reviewers: reames, spatel
Reviewed By: spatel
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60058
llvm-svn: 357389
This reverts commit 75216a6dbcfe5fb55039ef06a07e419fa875f4a5.
I'll recommit with a better commit message with reference to the
phabricator review.
llvm-svn: 357387
This fixes PR41270.
The recursive function evaluateInDifferentElementOrder expects to be called
on a vector Value, so when we call it on a vector GEP's arguments, we must
first check that the argument is indeed a vector.
llvm-svn: 357385
If we have a commutable vector binop with inverted select-shuffles,
we don't care about the order of the operands in each vector lane:
LHS = shuffle V1, V2, <0, 5, 6, 3>
RHS = shuffle V2, V1, <0, 5, 6, 3>
LHS + RHS --> <V1[0]+V2[0], V2[1]+V1[1], V2[2]+V1[2], V1[3]+V2[3]> --> V1 + V2
PR41304:
https://bugs.llvm.org/show_bug.cgi?id=41304
...is currently titled as an SLP enhancement, but at least for the
given example, we can reduce that in instcombine because we are just
eliminating shuffles.
As noted in the TODO, this could be generalized, but I haven't thought
through those patterns completely, so this is limited to what appears
to be always safe.
Differential Revision: https://reviews.llvm.org/D60048
llvm-svn: 357382
Adds a `seto` pattern expansion. Without it the lowerings of `fcmp one` and
`fcmp ord` would be inefficient due to an unoptimized double negation.
Differential Revision: https://reviews.llvm.org/D59699
llvm-svn: 357378
A pcrel_lo will point to the associated pcrel_hi fixup which in turn points to
the real target. RISCVMCExpr::evaluatePCRelLo will work around this
indirection in order to allow the fixup to be evaluate properly. However, if
relocations are forced (e.g. due to linker relaxation is enabled) then its
evaluation is undesired and will result in a relocation with the wrong target.
This patch modifies evaluatePCRelLo so it will not try to evaluate if the
fixup will be forced as a relocation. A new helper method is added to
RISCVAsmBackend to query this.
Differential Revision: https://reviews.llvm.org/D59686
llvm-svn: 357374
One motivation for making this change is that the lack of using movmsk is likely
a main source of perf difference between clang and gcc on the C-Ray benchmark as
shown here:
https://www.phoronix.com/scan.php?page=article&item=gcc-clang-2019&num=5
...but this change alone isn't enough to solve that problem.
The 'all-of' examples show what is likely the worst case trade-off: we end up with
an extra instruction (or 2 if we count the 'xor' register clearing). The 'any-of'
examples look clearly better using movmsk because we've traded 2 vector instructions
for 2 scalar instructions, and movmsk may have better timing than the generic 'movq'.
If we examine the llvm-mca output for these cases, it appears that even though the
'all-of' movmsk variant looks worse on paper, it would perform better on both
Haswell and Jaguar.
$ llvm-mca -mcpu=haswell no_movmsk.s -timeline
Iterations: 100
Instructions: 400
Total Cycles: 504
Total uOps: 400
Dispatch Width: 4
uOps Per Cycle: 0.79
IPC: 0.79
Block RThroughput: 1.0
$ llvm-mca -mcpu=haswell movmsk.s -timeline
Iterations: 100
Instructions: 600
Total Cycles: 358
Total uOps: 600
Dispatch Width: 4
uOps Per Cycle: 1.68
IPC: 1.68
Block RThroughput: 1.5
$ llvm-mca -mcpu=btver2 no_movmsk.s -timeline
Iterations: 100
Instructions: 400
Total Cycles: 407
Total uOps: 400
Dispatch Width: 2
uOps Per Cycle: 0.98
IPC: 0.98
Block RThroughput: 2.0
$ llvm-mca -mcpu=btver2 movmsk.s -timeline
Iterations: 100
Instructions: 600
Total Cycles: 311
Total uOps: 600
Dispatch Width: 2
uOps Per Cycle: 1.93
IPC: 1.93
Block RThroughput: 3.0
Finally, there may be CPUs where movmsk is horribly slow (old AMD small cores?), but if
that's true, then we're also almost certainly making the wrong transform already for
reductions with >2 elements, so that should be fixed independently.
Differential Revision: https://reviews.llvm.org/D59997
llvm-svn: 357367
In PR41304:
https://bugs.llvm.org/show_bug.cgi?id=41304
...we have a case where we want to fold a binop of select-shuffle (blended) values.
Rather than try to match commuted variants of the pattern, we can canonicalize the
shuffles and check for mask equality with commuted operands.
We don't produce arbitrary shuffle masks in instcombine, but select-shuffles are a
special case that the backend is required to handle because we already canonicalize
vector select to this shuffle form.
So there should be no codegen difference from this change. It's possible that this
improves CSE in IR though.
Differential Revision: https://reviews.llvm.org/D60016
llvm-svn: 357366
Straightforward port of StatepointIRVerifier pass to new Pass Manager framework.
Fix By: skatkov
Reviewed By: fedor.sergeev
Differential Revision: https://reviews.llvm.org/D59825
This is a re-land of r357147/r357148 with LLVM_ENABLE_MODULES build fixed.
Adding IR/SafepointIRVerifier.h into its own module.
llvm-svn: 357361
Negate updates flags like a subtract. We should be able to use the flags from the RMW form of negate when we have (store (X86ISD::SUB 0, load A), A)
Differential Revision: https://reviews.llvm.org/D60007
llvm-svn: 357353
This patch adds support for the RISC-V hard float ABIs, building on top of
rL355771, which added basic target-abi parsing and MC layer support. It also
builds on some re-organisations and expansion of the upstream ABI and calling
convention tests which were recently committed directly upstream.
A number of aspects of the RISC-V float hard float ABIs require frontend
support (e.g. flattening of structs and passing int+fp for fp+fp structs in a
pair of registers), and will be addressed in a Clang patch.
As can be seen from the tests, it would be worthwhile extending
RISCVMergeBaseOffsets to handle constant pool as well as global accesses.
Differential Revision: https://reviews.llvm.org/D59357
llvm-svn: 357352
Fixes PR41316 where the expanded PAVG intrinsic had had one of its ADDs turned into an OR due to its operands having no conflicting bits.
llvm-svn: 357351
Summary:
Linearing the control flow by placing `try`/`end_try` markers can create
mismatches in unwind destinations. This patch resolves these mismatches
by wrapping those instructions with an incorrect unwind destination with
a nested `try`/`catch`/`end_try` and branching to the right destination
within the new catch block.
Reviewers: dschuff
Subscribers: sunfish, sbc100, jgravelle-google, chrib, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D48345
llvm-svn: 357343
Summary:
While this does not change any final output, this will greatly simplify
ixing unwind destination mismatches in CFGStackify (D48345), because we
have to create some new registers there.
Reviewers: dschuff
Subscribers: sunfish, sbc100, jgravelle-google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59652
llvm-svn: 357342
The SplitF64 node is used on RV32D to convert an f64 directly to a pair of i32
(necessary as bitcasting to i64 isn't legal). When performed on a ConstantFP,
this will result in a FP load from the constant pool followed by a store to
the stack and two integer loads from the stack (necessary as there is no way
to directly move between f64 FPRs and i32 GPRs on RV32D). It's always cheaper
to just materialise integers for the lo and hi parts of the FP constant, so do
that instead.
llvm-svn: 357341
This change adds hierarchical "time trace" profiling blocks that can be visualized in Chrome, in a "flame chart" style. Each profiling block can have a "detail" string that for example indicates the file being processed, template name being instantiated, function being optimized etc.
This is taken from GitHub PR: https://github.com/aras-p/llvm-project-20170507/pull/2
Patch by Aras Pranckevičius.
Differential Revision: https://reviews.llvm.org/D58675
llvm-svn: 357340
Summary:
Currently we create a routing block to the dispatch block for every
predecessor of every entry. So the total number of routing blocks
created will be (# of preds) * (# of entries). But we don't need to do
this: we need at most 2 routing blocks per loop entry, one for when the
predecessor is inside the loop and one for it is outside the loop. (We
can't merge these into one because this will creates another loop cycle
between blocks inside and blocks outside) This patch fixes this and
creates at most 2 routing blocks per entry.
This also renames variable `Split` to `Routing`, which I think is a bit
clearer.
Reviewers: kripken
Subscribers: sunfish, dschuff, sbc100, jgravelle-google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59462
llvm-svn: 357337
Summary:
On AIX, we can determine whether a filesystem is remote using `mntctl`.
If the information is not found, then claim that the file is remote
(since that is the more restrictive case). Testing for the associated
interface is restored with a modified version of the unit test from
rL295768.
Reviewers: jasonliu, xingxue
Reviewed By: xingxue
Subscribers: jsji, apaprocki, Hahnfeld, zturner, krytarowski, kristina, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58801
llvm-svn: 357333
Summary:
This feature is not actually used for anything in the WebAssembly
backend, but adding it allows users to get it into the target features
sections of their objects, which makes these objects
future-compatible.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, jdoerfert, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D60013
llvm-svn: 357321
Summary:
This lets us avoid e.g. checking if A >=s B in getSMaxExpr(A, B) if we've
already established that (A smax B) is the best we can do.
Fixes PR41225.
Reviewers: asbirlea
Subscribers: mcrosier, jlebar, bixia, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60010
llvm-svn: 357320
This adds support for v2s32 vector inserts, and updates the selection +
regbankselect tests for G_INSERT_VECTOR_ELT.
Differential Revision: https://reviews.llvm.org/D59910
llvm-svn: 357318
We need XMM registers to handle varargs with the Win64 ABI. Before we would
silently generate bad code resulting in an assertion failure elsewhere in the
backend.
llvm-svn: 357317
Summary:
This fixes crashes when a BB in which an END_LOOP is to be placed is
unreachable and does not have any predecessors. Fixes PR41307.
Reviewers: dschuff
Subscribers: yurydelendik, sbc100, jgravelle-google, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60004
llvm-svn: 357303
Since this can be set with s_setreg*, it should not be a subtarget
property. Set a default based on the calling convention, and Introduce
a new amdgpu-dx10-clamp attribute to override this if desired.
Also introduce a new amdgpu-ieee attribute to match.
The values need to match to allow inlining. I think it is OK for the
caller's dx10-clamp attribute to override the callee, but there
doesn't appear to be the infrastructure to do this currently without
definining the attribute in the generic Attributes.td.
Eventually the calling convention lowering will need to insert a mode
switch somewhere for these.
llvm-svn: 357302
Summary:
Nodes that have no uses are eventually pruned when they are selected
from the worklist. Record nodes newly added to the worklist or DAG and
perform pruning after every combine attempt.
Reviewers: efriedma, RKSimon, craig.topper, spatel, jyknight
Reviewed By: jyknight
Subscribers: jdoerfert, jyknight, nemanjai, jvesely, nhaehnle, javed.absar, hiraditya, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58070
llvm-svn: 357283
Summary:
Various SelectionDAG non-combine operations (e.g. the getNode smart
constructor and legalization) may leave dangling nodes by applying
optimizations without fully pruning unused result values. This results
in nodes that are never added to the worklist and therefore can not be
pruned.
Add a node inserter for the combiner to make sure such nodes have the
chance of being pruned. This allows a number of additional peephole
optimizations.
Reviewers: efriedma, RKSimon, craig.topper, jyknight
Reviewed By: jyknight
Subscribers: msearles, jyknight, sdardis, nemanjai, javed.absar, hiraditya, jrtc27, atanasyan, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58068
llvm-svn: 357279
This may not be NFC, but I'm not sure how to expose any diffs in
tests. In theory, it should be slightly more efficient and possibly
more profitable to do the canonicalizations (which can increase the
undef elements in the mask) ahead of SimplifyDemandedVectorElts().
llvm-svn: 357272
For the cases where the icmp/fcmp predicate is commutative, use reorderInputsAccordingToOpcode to collect and commute the operands.
This requires a helper to recognise commutativity in both general Instruction and CmpInstr types - the CmpInst::isCommutative doesn't overload the Instruction::isCommutative method for reasons I'm not clear on (maybe because its based on predicate not opcode?!?).
Differential Revision: https://reviews.llvm.org/D59992
llvm-svn: 357266
The `lowerMSASplatImm` function zero-extends `i32` immediates while
building constant. If target type is `i64`, negative immediate loses
the sign. As a result, for example `__builtin_msa_ldi_d(-1)` lowered
to series of instruction loads incorrect value 0xffffffff to the `$w0`
register instead of single `ldi.d $w0, -1` instruction.
The fix zero-extends unsigned immediates and signed-extend signed
immediates.
Differential Revision: http://reviews.llvm.org/D59884
llvm-svn: 357264