When choosing whether a pair of loads can be combined into a single
wide load, we check that the load only has a sext user and that sext
also only has one user. But this can prevent the transformation in
the cases when parallel macs use the same loaded data multiple times.
To enable this, we need to fix up any other uses after creating the
wide load: generating a trunc and a shift + trunc pair to recreate
the narrow values. We also need to keep a record of which loads have
already been widened.
Differential Revision: https://reviews.llvm.org/D59215
llvm-svn: 356132
The CSR renaming further prepares the way for an upcoming patch adding support for more
RISC-V ABIs.
Modify RISCVRegisterInfo::getCalleeSavedRegs and
RISCVRegisterInfo::getReservedRegs to do MF->getSubtarget<RISCVSubtarget>()
once rather than multiple times.
llvm-svn: 356123
Prior to the introduction of funnel shift intrinsics we could count on rotate
by immediates prefering to use rotl since that's what MatchRotate would check
first. The or+shift pattern doesn't have a direction so one must be chosen
arbitrarily.
With funnel shift, there is a direction and fshr will try to use rotr first.
While fshl will try to use rotl first.
This patch adds the isel patterns for rotr to complement the rotl patterns. I've
put the rotr by 1 patterns in the instruction patterns. And moved the rotl by
bitwidth-1 patterns to separate Pat patterns.
Fixes PR41057.
llvm-svn: 356121
NFC. Some more preliminary factoring for G_INSERT_VECTOR_ELT.
Also better code-reuse, etc., etc.
Differential Revision: https://reviews.llvm.org/D59323
llvm-svn: 356107
Factor out the vector insert code in `selectBuildVector`. Replace part of it
with `emitScalarToVector`, since it was pretty much equivalent.
This will make implementing G_INSERT_VECTOR_ELT easier.
Differential Revision: https://reviews.llvm.org/D59322
llvm-svn: 356106
Some more refactoring for G_INSERT_VECTOR_ELT.
Factor out the code used to find a lane index from `selectExtractElt`. Put it
into a more general-purpose `getConstantValueForReg` function.
This will be shared with the code for G_INSERT_VECTOR_ELT.
Differential Revision: https://reviews.llvm.org/D59324
llvm-svn: 356101
Summary:
MsgPackDocument is the lighter-weight replacement for MsgPackTypes. This
commit switches AMDGPU HSA metadata processing to use MsgPackDocument
instead of MsgPackTypes.
Differential Revision: https://reviews.llvm.org/D57024
Change-Id: I0751668013abe8c87db01db1170831a76079b3a6
llvm-svn: 356081
The feature flag alone can't be trusted since it can be passed via -mattr. Need to ensure 64-bit mode as well.
We had a 64 bit mode check on the instruction to make the assembler work correctly. But we weren't guarding any of our lowering code or the hooks for the AtomicExpandPass.
I've added 32-bit command lines to atomic128.ll with and without cx16. The tests there would all previously fail if -mattr=cx16 was passed to them. I had to move one test case for f128 to a new file as it seems to have a different 32-bit mode or possibly sse issue.
Differential Revision: https://reviews.llvm.org/D59308
llvm-svn: 356078
Attempt to combine CONCAT_VECTORS nodes, which we only really have pre-legalization.
This encourages a lot of X86ISD::SUBV_BROADCAST generation, so I've added SimplifyDemandedVectorEltsForTargetNode handling for this at the same time.
The X86ISD::VTRUNC regression in shuffle-vs-trunc-256-widen.ll will be handled in a future commit.
llvm-svn: 356064
This follows similar logic in the ARM and Mips backends, and allows the free
use of s0 in functions without a dedicated frame pointer. The changes in
callee-saved-gprs.ll most clearly show the effect of this patch.
llvm-svn: 356063
A fuzzer found the crasher:
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=13700
The bug was introduced recently here:
rL355741
This is the quick fix. If we need to do this transform
later, then we'd have to extend/truncate the vector setcc
element type to the scalar setcc type (i8).
llvm-svn: 356053
Before this change LLVM emits non-microMIPS variant of the `mov.d`
command for microMIPS code.
Differential Revision: http://reviews.llvm.org/D59045
llvm-svn: 356052
To provide mapping between standard and microMIPS R6 variants of the
`sw` command we have to rename SWSP_xxx commands from "sw" to "swsp".
Otherwise `tablegen` starts to show the error `Multiple matches found
for `SW'`. After that to restore printing SWSP command as `sw`, I add
an appropriate `MipsInstAlias` instance.
We also need to implement "size reduction" for microMIPS R6. But this
task is for separate patch. After that the `micromips-lwsp-swsp.ll` test
case will be extended.
Differential Revision: http://reviews.llvm.org/D59046
llvm-svn: 356045
AVX1 broadcasts were failing as we were adding bitcasts that caused MayFoldLoad's hasOneUse to return false.
This patch stops introducing bitcasts so early and also replaces the broadcast index scaling through bitcasts (which can't succeed in some cases) to instead just keep track of the bitoffset which can be converted back to the broadcast index later on.
Differential Revision: https://reviews.llvm.org/D58888
llvm-svn: 356043
On micromips MipsMTLOHI is always matched to PseudoMTLOHI_DSP regardless
of +dsp argument. This patch checks is HasDSP predicate is present for
PseudoMTLOHI_DSP so PseudoMTLOHI_MM can be matched when appropriate.
Add expansion of PseudoMTLOHI_MM instruction into a mtlo/mthi pair.
Patch by Mirko Brkusanin.
Differential Revision: http://reviews.llvm.org/D59203
llvm-svn: 356039
Add break statements in Object/ELF.cpp since the code should consider the
generic tags for Hexagon, MIPS, and PPC. Add a test (copied from llvm-readobj)
to show that this works correctly (earlier versions of this patch would have
asserted).
The warnings in X86ELFObjectWriter.cpp are actually false-positives since
the nested switch() handles all possible values and returns in all cases.
Make this explicit by adding llvm_unreachable's.
Differential Revision: https://reviews.llvm.org/D58837
llvm-svn: 356037
RISCVDisassembler was incorrectly using sizeof(Arr) when it should have used
sizeof(Arr)/sizeof(Arr[0]). Update to use array_lengthof instead.
llvm-svn: 356035
Summary:
After instruction selection phase, possibly-throwing calls, which were
previously invoke, are wrapped in `EH_LABEL` instructions. For example:
```
EH_LABEL <mcsymbol .Ltmp0>
CALL_VOID @foo ...
EH_LABEL <mcsymbol .Ltmp1>
```
`EH_LABEL` is placed also in the beginning of EH pads:
```
bb.1 (landing-pad):
EH_LABEL <mcsymbol .Ltmp2>
...
```
And we'd like to maintian this relationship, so when we place a `try`,
```
TRY ...
EH_LABEL <mcsymbol .Ltmp0>
CALL_VOID @foo ...
EH_LABEL <mcsymbol .Ltmp1>
```
When we place a `catch`,
```
bb.1 (landing-pad):
EH_LABEL <mcsymbol .Ltmp2>
%0:except_ref = CATCH ...
...
```
Previously we didn't treat EH_LABELs specially, so `try` was placed
right before a call, and `catch` was placed in the beginning of an EH
pad.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58914
llvm-svn: 355996
This patch adds an XCOFF triple object format type into LLVM.
This XCOFF triple object file type will be used later by object file and assembly generation for the AIX platform.
Differential Revision: https://reviews.llvm.org/D58930
llvm-svn: 355989
A faulting_op is one that has specified behavior when a fault occurs, generally redirecting control flow to another location. This change just adds a comment to the assembly output which makes it both human readable, and machine checkable w/o having to parse the FaultMap section. This is used to split a test file into two parts, so that I can (in a near future commit) easily extend the test file to demonstrate another case.
llvm-svn: 355982
This indicates an intrinsic parameter is required to be a constant,
and should not be replaced with a non-constant value.
Add the attribute to all AMDGPU and generic intrinsics that comments
indicate it should apply to. I scanned other target intrinsics, but I
don't see any obvious comments indicating which arguments are intended
to be only immediates.
This breaks one questionable testcase for the autoupgrade. I'm unclear
on whether the autoupgrade is supposed to really handle declarations
which were never valid. The verifier fails because the attributes now
refer to a parameter past the end of the argument list.
llvm-svn: 355981
Vector imm setting instructions like XXLXORz/XXLXORspz/XXLXORdpz
Should behave like LI8.
We should set corresponding flags to allow rematerialization and other
opts in LICM, RA, Scheduling etc.
Differential Revision: https://reviews.llvm.org/D58645
llvm-svn: 355948
If a symbol points to the end of a fragment, instead of searching for
fixups in that fragment, search in the next fragment.
Fixes spurious assembler error with subtarget change next to "la"
pseudo-instruction, or expanded equivalent.
Alternate proposal to fix the problem discussed in
https://reviews.llvm.org/D58759.
Testcase by Ana Pazos.
Differential Revision: https://reviews.llvm.org/D58943
llvm-svn: 355946
This was found when we generated COPY from G8RC to F8RC in
EmitInstrWithCustomInserter without checking proper architecture,
we silently generated mtvsrd, which require P8 and up.
This is a NFC patch to add assert when we call copyPhysReg, in case
someone accidentally generate COPY between G8RC to F8RC for P7 and
below.
llvm-svn: 355920
For the design in question, overloads seem to be a much simpler and less subtle solution.
This removes ODR issues, and errors of the kind where code that uses the
specialization in question will accidentally and erroneously specialize
the primary template. This only "works" by accident; the program is
ill-formed NDR.
(Found with -Wundefined-func-template.)
Patch by Thomas Köppe!
Differential Revision: https://reviews.llvm.org/D58998
llvm-svn: 355880
ProcFeatures was a class that just concatenated two feature lists together and gave it a name. We used it to inherit features between CPUs.
ProcModel took a two CPU feature lists and concatenated them before deferring to ProcessorModel. This was to allow inherited features and specific features to be passed to each CPU.
Both of these allowed for only very rigid CPU inheritance rules.
With this patch we now store all of the lists we were using for inheritance in one object and do any list oncatenation we want there. Then we just pass whatever list we want from this class into the ProcessorModel class for each CPU.
Hopefully this gives us more flexibility to build up feature lists in whatever ways we think make sense. Perhaps untangling ISA flags and tuning flags.
I've only touched the CPUs that were directly affected by the removal of the ProcModel and ProcFeatures classes. We should move more of the feature lists into ProcessorFeatures.
llvm-svn: 355872
After r355865, we should be able to safely select G_EXTRACT_VECTOR_ELT without
running into any problematic intrinsics.
Also add a fix for lane copies, which don't support index 0.
llvm-svn: 355871
AtomicCmpSwapWithSuccess is legalised into an AtomicCmpSwap plus a comparison.
This requires an extension of the value which, by default, is a
zero-extension. When we later lower AtomicCmpSwap into a PseudoCmpXchg32 and then expanded in
RISCVExpandPseudoInsts.cpp, the lr.w instruction does a sign-extension.
This mismatch of extensions causes the comparison to fail when the compared
value is negative. This change overrides TargetLowering::getExtendForAtomicOps
for RISC-V so it does a sign-extension instead.
Differential Revision: https://reviews.llvm.org/D58829
Patch by Ferran Pallarès Roca.
llvm-svn: 355869
The RISC-V Assembly Programmer's Manual defines fp as another alias of x8.
However, our tablegen rules only recognise s0. This patch adds fp as another
alias of x8. GCC also accepts fp.
Differential Revision: https://reviews.llvm.org/D59209
Patch by Ferran Pallarès Roca.
llvm-svn: 355867
Overloaded intrinsics aren't necessarily safe for instruction selection. One
such intrinsic is aarch64.neon.addp.*.
This is a temporary workaround to ensure that we always fall back on that
intrinsic. Eventually this will be replaced with a proper solution.
https://bugs.llvm.org/show_bug.cgi?id=40968
Differential Revision: https://reviews.llvm.org/D59062
llvm-svn: 355865
Fixes https://bugs.llvm.org/show_bug.cgi?id=36796.
Implement basic legalizations (PromoteIntRes, PromoteIntOp,
ExpandIntRes, ScalarizeVecOp, WidenVecOp) for VECREDUCE opcodes.
There are more legalizations missing (esp float legalizations),
but there's no way to test them right now, so I'm not adding them.
This also includes a few more changes to make this work somewhat
reasonably:
* Add support for expanding VECREDUCE in SDAG. Usually
experimental.vector.reduce is expanded prior to codegen, but if the
target does have native vector reduce, it may of course still be
necessary to expand due to legalization issues. This uses a shuffle
reduction if possible, followed by a naive scalar reduction.
* Allow the result type of integer VECREDUCE to be larger than the
vector element type. For example we need to be able to reduce a v8i8
into an (nominally) i32 result type on AArch64.
* Use the vector operand type rather than the scalar result type to
determine the action, so we can control exactly which vector types are
supported. Also change the legalize vector op code to handle
operations that only have vector operands, but no vector results, as
is the case for VECREDUCE.
* Default VECREDUCE to Expand. On AArch64 (only target using VECREDUCE),
explicitly specify for which vector types the reductions are supported.
This does not handle anything related to VECREDUCE_STRICT_*.
Differential Revision: https://reviews.llvm.org/D58015
llvm-svn: 355860
AMDGPU target run out of Subtarget feature flags hitting the limit of 64.
AssemblerPredicates uses at most uint64_t for their representation.
At the same time CodeGen has exhausted this a long time ago and switched
to a FeatureBitset with the current limit of 192 bits.
This patch completes transition to the bitset for feature bits extending
it to asm matcher and MC code emitter.
Differential Revision: https://reviews.llvm.org/D59002
llvm-svn: 355839
A pattern needed to match TruncIntFP was missing. This was causing multiple
tests from llvm test suite to fail during compilation for micromips.
Patch by Mirko Brkusanin.
Differential Revision: https://reviews.llvm.org/D58722
llvm-svn: 355825
Narrow Scalar G_MUL for MIPS32.
Revisit NarrowScalar implementation in LegalizerHelper.
Introduce new helper function multiplyRegisters.
It performs generic multiplication of values held in multiple registers.
Generated instructions use only types NarrowTy and i1.
Destination can be same or two times size of the source.
Differential Revision: https://reviews.llvm.org/D58824
llvm-svn: 355814
Instead I plan to have dedicated nodes for FROUND_CURRENT and FROUND_NO_EXC.
This patch starts with FADDS/FSUBS/FMULS/FDIVS/FMAXS/FMINS/FSQRTS.
llvm-svn: 355799
After fix all asserts found by machine verifier in PowerPC target with following patches,
we can activate machine verifier as default.
rL293769, rL348566, rL349030, rL349029, rL350113, rL350111,
rL350799, rL350165, rL355378, rL352174, rL354762, rL350115
It's also found in PR#27456, https://bugs.llvm.org/show_bug.cgi?id=27456
Differential Revision: https://reviews.llvm.org/D59011
llvm-svn: 355798
We had patterns using X86ISD::SCALAR_SINT_TO_FP_RND/SCALAR_UINT_TO_FP_RND for
these instructions. There's nothing to round. Instead, we use a regular
sint_to_fp/uint_to_fp and a movsd as the pattern for these.
llvm-svn: 355796
Many of our tests were not using valid rounding mode immediates. Clang verifies this in the frontend when it creates the intrinsics from builtins, but the backend would still lower invalid immediates.
With this change we will now leave them as intrinsics if the immediate is invalid. This will cause an isel selection failure.
llvm-svn: 355789
Includes a fix to emit a CheckOpcode for build_vector when immAllZerosV/immAllOnesV is used as a pattern root. This means it can't be used to look through bitcasts when used as a root, but that's probably ok. This extra CheckOpcode will ensure that the first match in the isel table will be a SwitchOpcode which is needed by the caching optimization in the ISel Matcher.
Original commit message:
Previously we had build_vector PatFrags that called ISD::isBuildVectorAllZeros/Ones. Internally the ISD::isBuildVectorAllZeros/Ones look through bitcasts, but we aren't able to take advantage of that in isel. Instead of we have to canonicalize the types of the all zeros/ones build_vectors and insert bitcasts. Then we have to pattern match those exact bitcasts.
By emitting specific matchers for these 2 nodes, we can make isel look through any bitcasts without needing to explicitly match them. We should also be able to remove the canonicalization to vXi32 from lowering, but I've left that for a follow up.
This removes something like 40,000 bytes from the X86 isel table.
Differential Revision: https://reviews.llvm.org/D58595
llvm-svn: 355784
This patch adds proper handling of -target-abi, as accepted by llvm-mc and
llc. Lowering (codegen) for the hard-float ABIs will follow in a subsequent
patch. However, this patch does add MC layer support for the hard float and
RVE ABIs (emission of the appropriate ELF flags
https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md#-file-header).
ABI parsing must be shared between codegen and the MC layer, so we add
computeTargetABI to RISCVUtils. A warning will be printed if an invalid or
unrecognized ABI is given.
Differential Revision: https://reviews.llvm.org/D59023
llvm-svn: 355771
Summary:
Uses the named operands tablegen feature to look up the indices of
offset, address, and p2align operands for all load and store
instructions. This replaces brittle, incorrect logic for identifying
loads and store when eliminating frame indices, which previously
crashed on bulk-memory ops. It also cleans up the SetP2Alignment pass.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59007
llvm-svn: 355770
Summary:
Floating-point CSRs should be accessible even when F extension is not enabled.
But pseudo instructions that access floating point CSRs still require the F extension.
GNU tools already implement this behavior. RISC-V spec is pending update to reflect
this behavior and to extend it to pseudo instructions that access floating point CSRs.
Reviewers: asb
Reviewed By: asb
Subscribers: asb, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, llvm-commits
Differential Revision: https://reviews.llvm.org/D58932
llvm-svn: 355753
An extension of D58282 noted in PR39665:
https://bugs.llvm.org/show_bug.cgi?id=39665
This doesn't answer the request to use movmsk, but that's an
independent problem. We need this and probably still need
scalarization of FP selects because we can't do that as a
target-independent transform (although it seems likely that
targets besides x86 should have this transform).
llvm-svn: 355741
Summary:
This patch works around the bug in the ptxas tool with the processing of bytes
separated by the comma symbol. The emission of the packed string is
temporarily disabled.
Reviewers: tra
Subscribers: jholewinski, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59148
llvm-svn: 355740
Summary:
This change change the instrumentation to allow users to view the registers at the point at which tag mismatch occured. Most of the heavy lifting is done in the runtime library, where we save the registers to the stack and emit unwind information. This allows us to reduce the overhead, as very little additional work needs to be done in each __hwasan_check instance.
In this implementation, the fast path of __hwasan_check is unmodified. There are an additional 4 instructions (16B) emitted in the slow path in every __hwasan_check instance. This may increase binary size somewhat, but as most of the work is done in the runtime library, it's manageable.
The failure trace now contains a list of registers at the point of which the failure occured, in a format similar to that of Android's tombstones. It currently has the following format:
Registers where the failure occurred (pc 0x0055555561b4):
x0 0000000000000014 x1 0000007ffffff6c0 x2 1100007ffffff6d0 x3 12000056ffffe025
x4 0000007fff800000 x5 0000000000000014 x6 0000007fff800000 x7 0000000000000001
x8 12000056ffffe020 x9 0200007700000000 x10 0200007700000000 x11 0000000000000000
x12 0000007fffffdde0 x13 0000000000000000 x14 02b65b01f7a97490 x15 0000000000000000
x16 0000007fb77376b8 x17 0000000000000012 x18 0000007fb7ed6000 x19 0000005555556078
x20 0000007ffffff768 x21 0000007ffffff778 x22 0000000000000001 x23 0000000000000000
x24 0000000000000000 x25 0000000000000000 x26 0000000000000000 x27 0000000000000000
x28 0000000000000000 x29 0000007ffffff6f0 x30 00000055555561b4
... and prints after the dump of memory tags around the buggy address.
Every register is saved exactly as it was at the point where the tag mismatch occurs, with the exception of x16/x17. These registers are used in the tag mismatch calculation as scratch registers during __hwasan_check, and cannot be saved without affecting the fast path. As these registers are designated as scratch registers for linking, there should be no important information in them that could aid in debugging.
Reviewers: pcc, eugenis
Reviewed By: pcc, eugenis
Subscribers: srhines, kubamracek, mgorny, javed.absar, krytarowski, kristof.beyls, hiraditya, jdoerfert, llvm-commits, #sanitizers
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D58857
llvm-svn: 355738
When matching half of the build_vector to a load, there could still be
a hidden dependency on the other half of the build_vector the pattern
wouldn't detect. If there was an additional chain dependency on the
other value, a cycle could be introduced.
I don't think a tablegen pattern is capable of matching the necessary
conditions, so move this into PreprocessISelDAG. Check isPredecessorOf
for the other value to avoid a cycle. This has a warning that it's
expensive, so this should probably be moved into an MI pass eventually
that will have more freedom to reorder instructions to help match
this. That is currently complicated by the lack of a computeKnownBits
type mechanism for the selected function.
llvm-svn: 355731
This avoids breaking possible value dependencies when sorting loads by
offset.
AMDGPU has some load instructions that write into the high or low bits
of the destination register, and have a tied input for the other input
bits. These can easily have the same base pointer, but be a swizzle so
the high address load needs to come first. This was inserting glue
forcing the opposite ordering, producing a cycle the InstrEmitter
would assert on. It may be potentially expensive to look for the
dependency between the other loads, so just skip any where this could
happen.
Fixes bug 40936 by reverting r351379, which added a hacky attempt to
fix this by adding chains in this case, which I think was just working
around broken glue before the InstrEmitter. The core of the patch is
re-implementing the fix for that problem.
llvm-svn: 355728
This was checking the wrong operands for the base register and the
offsets. The indexes are shifted by the number of output registers
from the machine instruction definition, and the chain is moved to the
end.
llvm-svn: 355722
Summary:
If the LLVM module shows that it has debug info, but the file is
actually empty and the real debug info is not emitted, the ptxas tool
emits error 'Debug information not found in presence of .target debug'.
We need at leas one empty debug section to silence this message. Section
`.debug_loc` is not emitted for PTX and we can emit empty `.debug_loc`
section if `debug` option was emitted.
Reviewers: tra
Subscribers: jholewinski, aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D57250
llvm-svn: 355719
The indexed variant of vfmal.f16 and vfmsl.f16
instructions use the uppser bits of the indexed
operand to store the index (1 bit for the double
variant, 2 bits for the quad).
This limits the usable registers to d0 - d7 or
s0 - s15. This patch enforces this limitation.
Differential Revision: https://reviews.llvm.org/D59021
llvm-svn: 355707
Use this feature to fix a bug on ARM where 4 byte alignment is
incorrectly assumed.
Differential Revision: https://reviews.llvm.org/D57335
llvm-svn: 355685
We were just checking pointer size and type primitive size. But this caused unintended things like vectors of half being accepted by masked load/store.
For FP we now explicitly check for only double and float.
For pointers we now let any pointer through. Trusting that only 32 and 64 would be used to generate assembly.
We only check bitwidth after checking that the type is an integer.
llvm-svn: 355667
Rotate with explicit immediate is a single uop from Haswell on. An immediate of 1 has a dependency on the previous writer of flags, but the other immediate values do not.
The implicit rotate by 1 instruction is 2 uops. But the flags are merged after the rotate uop so the data result does not see the flag dependency. But I don't think we have any way of modeling that.
RORX is 1 uop without the load. 2 uops with the load. We currently model these with WriteShift/WriteShiftLd.
Differential Revision: https://reviews.llvm.org/D59077
llvm-svn: 355636
Haswell and possibly Sandybridge have an optimization for ADC/SBB with immediate 0 to use a single uop flow. This only applies GR16/GR32/GR64 with an 8-bit immediate. It does not apply to GR8. It also does not apply to the implicit AX/EAX/RAX forms.
Differential Revision: https://reviews.llvm.org/D59058
llvm-svn: 355635
- Copy kernel symbol attributes into kernel descriptor attributes
- Make sure kernel symbol's visibility is not "higher" than protected
Differential Revision: https://reviews.llvm.org/D59057
llvm-svn: 355630
Summary:
ShadowCallStack on x86_64 suffered from the same racy security issues as
Return Flow Guard and had performance overhead as high as 13% depending
on the benchmark. x86_64 ShadowCallStack was always an experimental
feature and never shipped a runtime required to support it, as such
there are no expected downstream users.
Reviewers: pcc
Reviewed By: pcc
Subscribers: mgorny, javed.absar, hiraditya, jdoerfert, cfe-commits, #sanitizers, llvm-commits
Tags: #clang, #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D59034
llvm-svn: 355624
Unsigned mul high for MIPS32 is selected into two PseudoInstructions:
PseudoMULTu and PseudoMFHI that use accumulator register class ACC64 for
some of its operands. Registers in this class have appropriate hi and lo
register as subregisters: $lo0 and $hi0 are subregisters of $ac0 etc.
mul instruction implicit-defs $lo0 and $hi0 according to MipsInstrInfo.td.
In functions where mul and PseudoMULTu are present fastRegisterAllocator
will "run out of registers during register allocation" because
'calcSpillCost' for $ac0 will return spillImpossible because subregisters
$lo0 and $hi0 of $ac0 are reserved by mul instruction above. A solution is
to mark implicit-defs of $lo0 and $hi0 as dead in mul instruction.
Differential Revision: https://reviews.llvm.org/D58715
llvm-svn: 355594
Use this feature to fix a bug on ARM where 4 byte alignment is
incorrectly assumed.
Differential Revision: https://reviews.llvm.org/D57335
llvm-svn: 355585
A previous patch for "uniform-work-group-size" attribute was found to break
some RADV and possibly radeon SI tests and had to be retracted.
This patch fixes that.
Differential Revision: http://reviews.llvm.org/D58993
llvm-svn: 355574
MIPS target supports lowering `RETURNADDR` and `FRAMEADDR` for a current
frame only. It's better to show an error message then crash on assertion
if `__builtin_return_address` is invoked with non-zero argument.
llvm-svn: 355558
Move the x86 combine from D58974 into the DAGCombine VSELECT code and update the SELECT version to use the isBooleanFlip helper as well.
Requested by @spatel on D59006
llvm-svn: 355533
In file PPCBranchSelector.cpp we tend to over estimate code size due to large
alignment and inline assembly. Usually it causes larger computed branch offset,
it is not big problem. But sometimes it may also causes smaller computed branch
offset than actual branch offset. If the offset is close to the limit of
encoding, it may cause problem at run time.
Following is a simplified example.
actual estimated
address address
...
bne Far 100 10c
.p2align 4
Near: 110 110
...
Far: 8108 8108
Actual offset: 0x8108 - 0x100 = 0x8008
Computed offset: 0x8108 - 0x10c = 0x7ffc
The computed offset is at most ((1 << alignment) - 4) bytes smaller than actual
offset. So we add this number to the offset for safety.
Differential Revision: https://reviews.llvm.org/D57718
llvm-svn: 355529
Use this feature to fix a bug on ARM where 4 byte alignment is
incorrectly assumed.
Differential Revision: https://reviews.llvm.org/D57335
llvm-svn: 355522
Summary:
This adds support for 64 bit buffer atomic arithmetic instructions but does not include
cmpswap as that depends on a fix to the way the register pairs are handled
Change-Id: Ib207ea65fb69487ccad5066ea647ae8ddfe2ce61
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58918
llvm-svn: 355520
As noticed on D58965
DAGCombiner::visitSELECT has something similar, so we should be able to move this to DAGCombiner and support VSELECT as well at some point.
Differential Revision: https://reviews.llvm.org/D58974
llvm-svn: 355494
This allows us to use an 8-bit sign extended immediate instead of a 16 or 32 bit immediate.
Also do similar for 0x80000000 with 64-bit adds to avoid having to use a movabsq.
llvm-svn: 355485
128 won't fit in a sign extended 8-bit immediate, but we can negate it to -128 and use the other operation. This results in a shorter encoding since the move would have used 16 or 32 bits for the immediate.
llvm-svn: 355484
This uses the infrastructure added in rL353152 to sink zext and sexts to
sub/add users, to enable vsubl/vaddl generation when NEON is available.
See https://bugs.llvm.org/show_bug.cgi?id=40025.
Reviewers: SjoerdMeijer, t.p.northover, samparker, efriedma
Reviewed By: samparker
Differential Revision: https://reviews.llvm.org/D58063
llvm-svn: 355460
Summary:
- Replaces some uses of `MachineFunction::iterator(MBB)` with
`MBB->getIterator()` and `MachineBasicBlock::iterator(MI)` with
`MI->getIterator()`, which are simpler.
- Replaces some uses of `std::prev` of `std::next` that takes a
MachineFunction or MachineBasicBlock iterator with `getPrevNode` and
`getNextNode`, which are also simpler.
Reviewers: sbc100
Subscribers: dschuff, sunfish, jgravelle-google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58913
llvm-svn: 355444
This caused the first matcher in the isel table for many targets to Opc_Scope instead of Opc_SwitchOpcode. This leads to a significant increase in isel match failures.
llvm-svn: 355433
The variable X86DomainReassignment::EnclosedEdges is used to store registers that have been enclosed in some closure, so those registers will be ignored when create new closures. But there is no registers has ever been put into this set, so a single register can be enclosed in multiple closures, it significantly increase compile time.
This patch adds a register into EnclosedEdges when it is enclosed into a closure.
Differential Revision: https://reviews.llvm.org/D58646
llvm-svn: 355430
We already do this for 16/32/64 as well as 8-bit add with register/immediate. Might as well do it for 8-bit INC/DEC too.
Differential Revision: https://reviews.llvm.org/D58869
llvm-svn: 355424
We already support 8-bits adds in convertToThreeAddress. But we can also support 8-bit OR if the bits are disjoint. We already do this for 16/32/64.
Differential Revision: https://reviews.llvm.org/D58863
llvm-svn: 355423
When lowering a select_cc node where the true and false values are of type f16,
we can't use a general conditional move because the FP16 instructions do not
support conditional execution. Instead, we must ensure that the condition code
is one of the four supported by the VSEL instruction.
Differential revision: https://reviews.llvm.org/D58813
llvm-svn: 355385
Summary:
In some cases the KILL was causing a hazard to be introduced as these were
scheduled into hazard slots, but don't result in an instruction.
KILL shouldn't be considered for hazard recognition.
Change-Id: Ib6d2a2160f8c94cd0ce611ab198c7e4f46aeffcf
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, tpr, t-tye, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58898
llvm-svn: 355384
Implement MCInstrAnalysis for AMDGPU, with default implementations save
for `evaluateBranch`.
Differential Revision: https://reviews.llvm.org/D58400
llvm-svn: 355373
We have quite a few cases of using FP instructions for integer operations when only AVX1 is available. Then we switch to integer instructions with AVX2. In a lot of these cases execution domain fixing will take care of turning FP instructions into integer if its profitable.
With this patch we just keep on using the FP instructions even with AVX2. I've only handled some cases that don't require messing with patterns that are defined in the instruction definition. Those will require more subtle multiclass work possibly involving null_frag, hasSideEffects = 0, etc.
Differential Revision: https://reviews.llvm.org/D58470
llvm-svn: 355361
If There is no types/non-empty strings, do not generate
.BTF section. If there is no func_info/line_info, do
not generate .BTF.ext section.
Signed-off-by: Yonghong Song <yhs@fb.com>
Differential Revision: https://reviews.llvm.org/D58936
llvm-svn: 355360
This adds instruction selection support for G_EXTRACT_VECTOR_ELT for cases
where the index is defined by a G_CONSTANT.
It also factos out the lane copy opcode selection part into its own function,
`getLaneCopyOpcode`. This is used by both `selectUnmergeValues` and
`selectExtractElt`.
Differential Revision: https://reviews.llvm.org/D58469
llvm-svn: 355344
The code to materialize a mask from a constant pool load tried to use a 128 bit
LDR to load a 64 bit constant pool entry, which was 8 byte aligned. This resulted
in a link failure in the NEON tests in the test suite since the LDR address was
unaligned. This change fixes that to instead emit a 64 bit LDR if the entry is
64 bit, before converting back to a 128 bit register for the TBL.
llvm-svn: 355326
Summary:
This is quite minimal so far, introduce them with .section,
fill them with .int8 or .asciz, end with .size
Reviewers: dschuff, sbc100, aheejin
Subscribers: jgravelle-google, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58660
llvm-svn: 355321
X86TargetLowering::EmitLoweredSelect presently detects sequences of CMOV pseudo
instructions without accounting for debug intrinsics. This leads to different
codegen with and without option -g, if a DBG_VALUE instruction lands in the
middle of several lowered selects.
Work around this by skipping over debug instructions when looking for CMOV
sequences, and sinking those debug insts into the EmitLoweredSelect sunk block.
This might slightly shift where variables appear in the instruction sequence,
but won't re-order assignments.
Differential Revision: https://reviews.llvm.org/D58672
llvm-svn: 355307
The isScaledConstantInRange function takes upper and lower bounds which are
checked after dividing by the scale, so the bounds checks for half, single and
double precision should all be the same. Previously, we had wrong bounds checks
for half precision, so selected an immediate the instructions can't actually
represent.
Differential revision: https://reviews.llvm.org/D58822
llvm-svn: 355305
1) GCC complains that KnownValid is set but not used.
2) In ARMInstructionSelector::selectGlobal() the code is mixing "enumeral
and non-enumeral type in conditional expression". Solve this by casting
to unsigned which is the final type anyway.
Differential Revision: https://reviews.llvm.org/D58834
llvm-svn: 355304
Summary:
Before when we implemented the first EH proposal, 'catch <tag>'
instruction may not catch an exception so there were multiple EH pads an
exception can unwind to. That means a BB could have multiple EH pad
successors.
Now after we switched to the new proposal, every 'catch' instruction
catches an exception, and there is only one catchpad per catchswitch, so
we at most have one EH pad successor, making `ThrowUnwindDest` map in
`WasmEHInfo` unnecessary.
Keeping `ThrowUnwindDest` map in `WasmEHInfo` has its own problems,
because other optimization passes can split a BB that contains possibly
throwing calls (previously invokes), and we have to update the map every
time that happens, which is not easy for common CodeGen passes.
This also correctly updates successor info in LateEHPrepare when we add
a rethrow instruction.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58486
llvm-svn: 355296
We were using VPBLENDW for v2i64 and VBLENDPD for v4i64. VPBLENDD has better throughput than VPBLENDW on some CPUs so it makes sense to use it when possible. VBLENDPD will probably become VBLENDD during execution domain fixing, but we might as well use integer in isel while we can.
This should work around some issues with the domain fixing pass prefering PBLENDW when we start with PBLENDW. There may still be some v8i16 cases that could use PBLENDD.
llvm-svn: 355281
Summary:
This prevents crashes in instruction selection when these operations
are used. The tests check that the scalar version of the instruction
is used where applicable, although some expansions do not use the
scalar version.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58859
llvm-svn: 355261
Summary:
This extends the variety of pattern that can generate a SHLD instead of using two shifts.
This fixes a regression that would be introduced by D57367 or D33587
Reviewers: RKSimon, craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D57389
llvm-svn: 355260
Previously we had build_vector PatFrags that called ISD::isBuildVectorAllZeros/Ones. Internally the ISD::isBuildVectorAllZeros/Ones look through bitcasts, but we aren't able to take advantage of that in isel. Instead of we have to canonicalize the types of the all zeros/ones build_vectors and insert bitcasts. Then we have to pattern match those exact bitcasts.
By emitting specific matchers for these 2 nodes, we can make isel look through any bitcasts without needing to explicitly match them. We should also be able to remove the canonicalization to vXi32 from lowering, but I've left that for a follow up.
This removes something like 40,000 bytes from the X86 isel table.
Differential Revision: https://reviews.llvm.org/D58595
llvm-svn: 355224
The new addressing mode added for the v8.2A FP16 instructions uses bit 8 of the
immediate to encode the sign of the offset, like the other FP loads/stores, so
need to be treated the same way.
Differential revision: https://reviews.llvm.org/D58816
llvm-svn: 355201
This function was not checking for the condition code variants which are
undefined if either input is NaN, so we were missing selection of the VSEL
instruction in some cases when using -fno-honor-nans or -ffast-math.
Differential revision: https://reviews.llvm.org/D58812
llvm-svn: 355199
These were not recognized as potential atomics by memory legalizer.
The test was working not because legalizer did a right thing, but
because it has skipped all these instructions. When I have fixed
DS desciption test started to fail because region address has
changed from 4 to 2 a while ago.
Differential Revision: https://reviews.llvm.org/D58802
llvm-svn: 355179
Unsigned mul high for MIPS32 is selected into two PseudoInstructions:
PseudoMULTu and PseudoMFHI that use accumulator register class ACC64 for
some of its operands. Registers in this class have appropriate hi and lo
register as subregisters: $lo0 and $hi0 are subregisters of $ac0 etc.
mul instruction implicit-defs $lo0 and $hi0 according to MipsInstrInfo.td.
In functions where mul and PseudoMULTu are present fastRegisterAllocator
will "run out of registers during register allocation" because
'calcSpillCost' for $ac0 will return spillImpossible because subregisters
$lo0 and $hi0 of $ac0 are reserved by mul instruction above. A solution is
to mark implicit-defs of $lo0 and $hi0 as dead in mul instruction.
Differential Revision: https://reviews.llvm.org/D58715
llvm-svn: 355178
In certain cases, the first non-frame-setup instruction in a function is
a branch. For example, it could be a cbz on an argument. Make sure we
correctly allocate the UnwindHelp, and find an appropriate register to
use to initialize it.
Fixes https://bugs.llvm.org/show_bug.cgi?id=40184
Differential Revision: https://reviews.llvm.org/D58752
llvm-svn: 355136
This is another step towards ensuring that we produce the optimal code for reductions,
but there are other potential benefits as seen in the tests diffs:
1. Memory loads may get scalarized resulting in more efficient code.
2. Memory stores may get scalarized resulting in more efficient code.
3. Complex ops like fdiv/sqrt get scalarized which may be faster instructions depending on uarch.
4. Even simple ops like addss/subss/mulss/roundss may result in faster operation/less frequency throttling when scalarized depending on uarch.
The TODO comment suggests 1 or more follow-ups for opcodes that can currently result in regressions.
Differential Revision: https://reviews.llvm.org/D58282
llvm-svn: 355130
Like the other load/store instructions, "w" register is preferred when
disassembling BPF_STX | BPF_W | BPF_XADD.
v1 -> v2:
- Updated testcase insn-unit.s (Yonghong)
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
llvm-svn: 355127
Support sub-register code-gen for XADD is like supporting any other Load
and Store patterns.
No new instruction is introduced.
lock *(u32 *)(r1 + 0) += w2
has exactly the same underlying insn as:
lock *(u32 *)(r1 + 0) += r2
BPF_W width modifier has guaranteed they behave the same at runtime. This
patch merely teaches BPF back-end that BPF_W width modifier could work
GPR32 register class and that's all needed for sub-register code-gen
support for XADD.
test/CodeGen/BPF/xadd.ll updated to include sub-register code-gen tests.
A new testcase test/CodeGen/BPF/xadd_legal.ll is added to make sure the
legal case could pass on all code-gen modes. It could also test dead Def
check on GPR32. If there is no proper handling like what has been done
inside BPFMIChecking.cpp:hasLivingDefs, then this testcase will fail.
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
llvm-svn: 355126
BPF XADD semantics require all Defs of XADD are dead, meaning any result of
XADD insn is not used.
However, BPF backend hasn't enabled sub-register liveness track, so when
the source and destination operands of XADD are GPR32, there is no
sub-register dead info. If we rely on the generic
MachineInstr::allDefsAreDead, then we will raise false alarm on GPR32 Def.
This was fine as there was no sub-register code-gen support for XADD which
will be added by the next patch.
To support GPR32 Def, ideally we could just enable sub-registr liveness
track on BPF backend, then allDefsAreDead could work on GPR32 Def. This
requires implementing TargetSubtargetInfo::enableSubRegLiveness on BPF.
However, sub-register liveness tracking module inside LLVM is actually
designed for the situation where one register could be split into more
than one sub-registers for which case each sub-register could have their
own liveness and kill one of them doesn't kill others. So, tracking
liveness for each make sense.
For BPF, each 64-bit register could only have one 32-bit sub-register. This
is exactly the case which LLVM think brings no benefits for doing
sub-register tracking, because the live range of sub-register must always
equal to its parent register, therefore liveness tracking is disabled even
the back-end has implemented enableSubRegLiveness. The detailed information
is at r232695:
Author: Matthias Braun <matze@braunis.de>
Date: Thu Mar 19 00:21:58 2015 +0000
Do not track subregister liveness when it brings no benefits
Hence, for BPF, we enhance MachineInstr::allDefsAreDead. Given the solo
sub-register always has the same liveness as its parent register, LLVM is
already attaching a implicit 64-bit register Def whenever the there is
a sub-register Def. The liveness of the implicit 64-bit Def is available.
For example, for "lock *(u32 *)(r0 + 4) += w9", the MachineOperand info
could be:
$w9 = XADDW32 killed $r0, 4, $w9(tied-def 0),
implicit killed $r9, implicit-def dead $r9
Even though w9 is not marked as Dead, the parent register r9 is marked as
Dead correctly, and it is safe to use such information or our purpose.
v1 -> v2:
- Simplified code logic inside hasLiveDefs. (Yonghong)
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
llvm-svn: 355124
We don't have any combines that can look through a bitcast to truncate a build vector of constants. So the truncate will stick around and give us something like this pattern (binop (trunc X), (trunc (bitcast (build_vector)))) which has two truncates in it. Which will be reversed by hoistLogicOpWithSameOpcodeHands in the generic DAG combiner. Thus causing an infinite loop.
Even if we had a combine for (truncate (bitcast (build_vector))), I think it would need to be implemented in getNode otherwise DAG combiner visit ordering would probably still visit the binop first and reverse it. Or combineTruncatedArithmetic would need to do its own constant folding.
Differential Revision: https://reviews.llvm.org/D58705
llvm-svn: 355116
Summary:
In the clang UI, replaces -mthread-model posix with -matomics as the
source of truth on threading. In the backend, replaces
-thread-model=posix with the atomics target feature, which is now
collected on the WebAssemblyTargetMachine along with all other used
features. These collected features will also be used to emit the
target features section in the future.
The default configuration for the backend is thread-model=posix and no
atomics, which was previously an invalid configuration. This change
makes the default valid because the thread model is ignored.
A side effect of this change is that objects are never emitted with
passive segments. It will instead be up to the linker to decide
whether sections should be active or passive based on whether atomics
are used in the final link.
Reviewers: aheejin, sbc100, dschuff
Subscribers: mehdi_amini, jgravelle-google, hiraditya, sunfish, steven_wu, dexonsmith, rupprecht, jfb, jdoerfert, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D58742
llvm-svn: 355112
This extends the existing support for shufflevector to handle cases like
<2 x float>, which we can implement by concating the vectors and using a TBL1.
Differential Revision: https://reviews.llvm.org/D58684
llvm-svn: 355104
Summary:
The description of KnownBits::zext() and
KnownBits::zextOrTrunc() has confusingly been telling
that the operation is equivalent to zero extending the
value we're tracking. That has not been true, instead
the user has been forced to explicitly set the extended
bits as known zero afterwards.
This patch adds a second argument to KnownBits::zext()
and KnownBits::zextOrTrunc() to control if the extended
bits should be considered as known zero or as unknown.
Reviewers: craig.topper, RKSimon
Reviewed By: RKSimon
Subscribers: javed.absar, hiraditya, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58650
llvm-svn: 355099
Move the stdu instruction in the prologue and epilogue.
This should provide a small performance boost in functions that are able to do
this. I've kept this change rather conservative at the moment and functions
with frame pointers or base pointers will not try to move the stack pointer
update.
Differential Revision: https://reviews.llvm.org/D42590
llvm-svn: 355085
This gets rid of some duplication in the TableGen definition, but it
forces us to keep both a pointer and a reference to the subtarget in the
ARMInstructionSelector. That is pretty ugly but it might be a reasonable
trade-off, since the TableGen descriptions should outlive the code in
the selector (or in the worst case we can update to use just the
reference when we get rid of DAGISel).
Differential Revision: https://reviews.llvm.org/D58031
llvm-svn: 355083
Add the same level of support as for ARM mode (i.e. still no TLS
support).
In most cases, it is sufficient to replace the opcodes with the
t2-equivalent, but there are some idiosyncrasies that I decided to
preserve because I don't understand the full implications:
* For ARM we use LDRi12 to load from constant pools, but for Thumb we
use t2LDRpci (I'm not sure if the ideal would be to use t2LDRi12 for
Thumb as well, or to use LDRcp for ARM).
* For Thumb we don't have an equivalent for MOV|LDRLIT_ga_pcrel_ldr, so
we have to generate MOV|LDRLIT_ga_pcrel plus a load from GOT.
The tests are in separate files because they're hard enough to read even
without doubling the number of checks.
llvm-svn: 355077
These allows use to use the same set of isel patterns for sra/srl/shl which are undefined for out of range shifts and intrinsic shifts which aren't undefined.
Doing this late allows DAG combine to have every opportunity to optimize the sra/srl/shl nodes.
This removes about 7000 bytes from the isel table and simplies the td files.
llvm-svn: 355071
At the moment, we mark every atomic memory access as being also volatile. This is unnecessarily conservative and prohibits many legal transforms (DCE, folding, etc..).
This patch removes MOVolatile from the MachineMemOperands of atomic, but not volatile, instructions. This should be strictly NFC after a series of previous patches which have gone in to ensure backend code is conservative about handling of isAtomic MMOs. Once it's in and baked for a bit, we'll start working through removing unnecessary bailouts one by one. We applied this same strategy to the middle end a few years ago, with good success.
To make sure this patch itself is NFC, it is build on top of a series of other patches which adjust code to (for the moment) be as conservative for an atomic access as for a volatile access and build up a test corpus (mostly in test/CodeGen/X86/atomics-unordered.ll)..
Previously landed
D57593 Fix a bug in the definition of isUnordered on MachineMemOperand
D57596 [CodeGen] Be conservative about atomic accesses as for volatile
D57802 Be conservative about unordered accesses for the moment
rL353959: [Tests] First batch of cornercase tests for unordered atomics.
rL353966: [Tests] RMW folding tests w/unordered atomic operations.
rL353972: [Tests] More unordered atomic lowering tests.
rL353989: [SelectionDAG] Inline a single use helper function, and remove last non-MMO interface
rL354740: [Hexagon, SystemZ] Be super conservative about atomics
rL354800: [Lanai] Be super conservative about atomics
rL354845: [ARM] Be super conservative about atomics
Attention Out of Tree Backend Owners: This patch may break you. If it does, you can use the TLI getMMOFlags hook to restore the MOVolatile to any instruction you need to. (See llvm-dev thread titled "PSA: Changes to how atomics are handled in backends" started Feb 27, 2019.)
Differential Revision: https://reviews.llvm.org/D57601
llvm-svn: 355025
A lot of the INSERT_SUBVECTOR combines can be more generally handled as if they have come from a CONCAT_VECTORS node.
I've been investigating adding a CONCAT_VECTORS combine to X86, but this is a much easier first step that avoids the issue of handling a number of pre-legalization issues that I've encountered.
Differential Revision: https://reviews.llvm.org/D58583
llvm-svn: 355015
Currently, the LLVM will print an error like
Unsupported relocation: try to compile with -O2 or above,
or check your static variable usage
if user defines more than one static variables in a single
ELF section (e.g., .bss or .data).
There is ongoing effort to support static and global
variables in libbpf and kernel. This patch removed the
assertion so user programs with static variables won't
fail compilation.
The static variable in-section offset is written to
the "imm" field of the corresponding to-be-relocated
bpf instruction. Below is an example to show how the
application (e.g., libbpf) can relate variable to relocations.
-bash-4.4$ cat g1.c
static volatile long a = 2;
static volatile int b = 3;
int test() { return a + b; }
-bash-4.4$ clang -target bpf -O2 -c g1.c
-bash-4.4$ llvm-readelf -r g1.o
Relocation section '.rel.text' at offset 0x158 contains 2 entries:
Offset Info Type Symbol's Value Symbol's Name
0000000000000000 0000000400000001 R_BPF_64_64 0000000000000000 .data
0000000000000018 0000000400000001 R_BPF_64_64 0000000000000000 .data
-bash-4.4$ llvm-readelf -s g1.o
Symbol table '.symtab' contains 6 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 0 FILE LOCAL DEFAULT ABS g1.c
2: 0000000000000000 8 OBJECT LOCAL DEFAULT 4 a
3: 0000000000000008 4 OBJECT LOCAL DEFAULT 4 b
4: 0000000000000000 0 SECTION LOCAL DEFAULT 4
5: 0000000000000000 64 FUNC GLOBAL DEFAULT 2 test
-bash-4.4$ llvm-objdump -d g1.o
g1.o: file format ELF64-BPF
Disassembly of section .text:
0000000000000000 test:
0: 18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
2: 79 11 00 00 00 00 00 00 r1 = *(u64 *)(r1 + 0)
3: 18 02 00 00 08 00 00 00 00 00 00 00 00 00 00 00 r2 = 8 ll
5: 61 20 00 00 00 00 00 00 r0 = *(u32 *)(r2 + 0)
6: 0f 10 00 00 00 00 00 00 r0 += r1
7: 95 00 00 00 00 00 00 00 exit
-bash-4.4$
. from symbol table, static variable "a" is in section #4, offset 0.
. from symbol table, static variable "b" is in section #4, offset 8.
. the first relocation is against symbol #4:
4: 0000000000000000 0 SECTION LOCAL DEFAULT 4
and in-section offset 0 (see llvm-objdump result)
. the second relocation is against symbol #4:
4: 0000000000000000 0 SECTION LOCAL DEFAULT 4
and in-section offset 8 (see llvm-objdump result)
. therefore, the first relocation is for variable "a", and
the second relocation is for variable "b".
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
llvm-svn: 354954
Summary:
When creating `ScopeTops` info for `try` ~ `catch` ~ `end_try`, we
should create not only `end_try` -> `try` mapping but also `catch` ->
`try` mapping as well. If this is not created, `block` and `end_block`
markers later added may span across an existing `catch`, resulting in
the incorrect code like:
```
try
block --| (X)
catch |
end_block --|
end_try
```
Reviewers: dschuff
Subscribers: sunfish, sbc100, jgravelle-google, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58605
llvm-svn: 354945
Summary:
This removes unnecessary instructions after TRY marker placement. There
are two cases:
- `end`/`end_block` can be removed if they overlap with `try`/`end_try`
and they have the same return types.
- `br` right before `catch` that branches to after `end_try` can be
deleted.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58591
llvm-svn: 354939
Since there is no "Load-and-Test-High" instruction, the 32 bit load of a
register to be compared with 0 can only be implemented with LT if the virtual
GRX32 register ends up in a low part (GR32 register).
This patch detects these cases and passes the GR32 registers (low parts) as
(soft) hints in getRegAllocationHints().
Review: Ulrich Weigand.
llvm-svn: 354935
SITargetLowering::reassociateScalarOps() does not touch constants
so that DAGCombiner::ReassociateOps() does not revert the combine.
However a global address is not a ConstantSDNode.
Switched to the method used by DAGCombiner::ReassociateOps() itself
to detect constants.
Differential Revision: https://reviews.llvm.org/D58695
llvm-svn: 354926
Original implementation can't correctly handle __m256 and __m512 types
passed by reference through stack. This patch fixes it.
Patch by Wei Xiao!
Differential Revision: https://reviews.llvm.org/D57643
llvm-svn: 354921
This patch enables the following
1) AMD family 17h "znver2" tune flag (-march, -mcpu).
2) ISAs that are enabled for "znver2" architecture.
3) For the time being, it uses the znver1 scheduler model.
4) Tests are updated.
5) Scheduler descriptions are yet to be put in place.
Reviewers: craig.topper
Differential Revision: https://reviews.llvm.org/D58343
llvm-svn: 354897
This patch aims to make sure that any such constant that can be generated
with a vector instruction (for example VGBM) is recognized as such during
legalization and kept as a target independent node through post-legalize
DAGCombining.
Two new functions named isVectorConstantLegal() and loadVectorConstant()
replace old ways of handling vector/FP constants.
A new struct named SystemZVectorConstantInfo is used to cache the results of
isVectorConstantLegal() and pass them onto loadVectorConstant().
Support for fp128 constants in the presence of FeatureVectorEnhancements1
(z14) has been added.
Review: Ulrich Weigand
https://reviews.llvm.org/D58270
llvm-svn: 354896
The --disassembler-options, or -M, are used to customize
the disassembler and affect its output.
The two implemented options allow selecting register names on ARM:
* With -Mreg-names-raw, the disassembler uses rNN for all registers.
* With -Mreg-names-std it prints sp, lr and pc for r13, r14 and r15,
which is the default behavior of llvm-objdump.
Differential Revision: https://reviews.llvm.org/D57680
llvm-svn: 354870
For outgoing varargs arguments, it's necessary to check the OrigAlign field
of the corresponding OutputArg entry to determine argument alignment, rather
than just computing an alignment from the argument value type. This is
because types like fp128 are split into multiple argument values, with
narrower types that don't reflect the ABI alignment of the full fp128.
This fixes the printf("printfL: %4.*Lf\n", 2, lval); testcase.
Differential Revision: https://reviews.llvm.org/D58656
llvm-svn: 354846
As requested during review of D57601 <https://reviews.llvm.org/D57601> https://reviews.llvm.org/D57601, be equally conservative for atomic MMOs as for volatile MMOs in all in tree backends. At the moment, all atomic MMOs are also volatile, but I'm about to change that.
Differential Revision: https://reviews.llvm.org/D58490
Note: D58498 landed in several pieces as individual backends were approved. This is the last chunk.
llvm-svn: 354845
Summary: We shouldn't delete elements while iterating a ranged for loop.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58519
llvm-svn: 354844
Summary:
Use a custom calling convention handler for interrupts instead of fixing
up the locations in LowerMemArgument. This way, the offsets are correct
when constructed and we don't need to account for them in as many
places.
Depends on D56883
Replaces D56275
Reviewers: craig.topper, phil-opp
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D56944
llvm-svn: 354837
Try to use concat_vectors. Also remove unnecessary assert on
pointers. Fixes asserting for <4 x s16> operations and 64-bit pointers
for AMDGPU.
llvm-svn: 354828
If the LHS has known zeros, the RHS immediate will have had bits removed. So call computeKnownBits to get the known zeroes so we can handle this case.
Differential Revision: https://reviews.llvm.org/D58475
llvm-svn: 354811
Fixes https://bugs.llvm.org/show_bug.cgi?id=40325 by zero extending
(and x, 1) the condition before branching on it.
To avoid regressing trivial cases, I'm combining emission of cmp+br
sequences for the single-use + same block case (similar to what we
do in x86). icmpbr1.ll still regresses due to the cross-bb usage
of the condition.
Differential Revision: https://reviews.llvm.org/D58576
llvm-svn: 354808
This is a preparatory change as I want to use emitScalarToVector() elsewhere,
and in general we want to transition to MIRBuilder instead of using BuildMI
directly.
Differential Revision: https://reviews.llvm.org/D58528
llvm-svn: 354807
As requested during review of D57601 <https://reviews.llvm.org/D57601>, be equally conservative for atomic MMOs as for volatile MMOs in all in tree backends. At the moment, all atomic MMOs are also volatile, but I'm about to change that.
Reviewed as part of https://reviews.llvm.org/D58490, with other backends still pending review.
llvm-svn: 354800
This adds a few extra Thumb1 opcodes to improve the peephole opimisers
ability to remove redundant cmp instructions. tADC and tSBC require
a small fixup to prevent MOVS being moved past the instruction, giving
the wrong flags.
Differential Revision: https://reviews.llvm.org/D58281
llvm-svn: 354791
Avoid ADD/SUB instruction duplication by reusing the X86ISD::ADD/SUB results.
Includes ADD commutation - I tried to include NEG+SUB SUB commutation as well but this causes regressions as we don't have good combine coverage to simplify X86ISD::SUB.
Differential Revision: https://reviews.llvm.org/D58597
llvm-svn: 354771
More or less all the instructions defined in the v8.2a full-fp16
extension are defined as UNPREDICTABLE if you put them in an IT block
(Thumb) or use with any condition other than AL (ARM). LLVM didn't
know that, and was happy to conditionalise them.
In order to force these instructions to count as not predicable, I had
to make a small Tablegen change. The code generation back end mostly
decides if an instruction was predicable by looking for something it
can identify as a predicate operand; there's an isPredicable bit flag
that overrides that check in the positive direction, but nothing that
overrides it in the negative direction.
(I considered the alternative approach of actually removing the
predicate operand from those instructions, but thought that it would
be more painful overall for instructions differing only in data type
to have different shapes of operand list. This way, the only code that
has to notice the difference is the if-converter.)
So I've added an isUnpredicable bit alongside isPredicable, and set
that bit on the right subset of FP16 instructions, and also on the
VSEL, VMAXNM/VMINNM and VRINT[ANPM] families which should be
unpredicable for all data types.
I've included a couple of representative regression tests, both of
which previously caused an fp16 instruction to be conditionalised in
ARM state and (with -arm-no-restrict-it) to be put in an IT block in
Thumb.
Reviewers: SjoerdMeijer, t.p.northover, efriedma
Reviewed By: efriedma
Subscribers: jdoerfert, javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57823
llvm-svn: 354768
Summary:
Fast selection of llvm fptoi & fptrunc instructions is not handled well about
VSX instruction support.
We'd use VSX float convert integer instruction instead of non-vsx float convert
integer instruction if the operand register class is VSSRC or VSFRC because i32
and i64 are mapped to VSSRC and VSFRC correspondingly if VSX feature is
openeded.
For float trunc instruction, we do this silimar work like float convert integer
instruction to try to use VSX instruction.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D58430
llvm-svn: 354762
Its proving tricky to combine shuffles across multiple vector sizes, so for now I'm adding this more specific combine - the pattern is common enough to be worth it as a first step.
llvm-svn: 354757
Summary:
Previously we used BLENDPS/BLENDPD but that puts the blend in the FP domain. Under optsize, the two address instruction pass can cause blendps/blendpd to commute to blendps/blendpd. But we probably shouldn't do that if the original type was a integer. So use pblendw instead.
Reviewers: spatel, RKSimon
Reviewed By: RKSimon
Subscribers: jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58574
llvm-svn: 354755
Summary:
The AX/EAX/RAX with immediate forms are 2 uops just like the AL with immediate.
The modrm form with r8 and immediate is a single uop just like r16/r32/r64 with immediate.
Reviewers: RKSimon, andreadb
Reviewed By: RKSimon
Subscribers: gbedwell, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58581
llvm-svn: 354754
Summary:
When promoting the over flow vector for these ops we should use the target's desired setcc result type. This way a v8i32 result type will use a v8i32 overflow vector instead of a v8i16 overflow vector. A v8i16 overflow vector will cause LegalizeDAG/LegalizeVectorOps to have to use v8i32 and truncate to v8i16 in its expansion. By doing this in type legalization instead, we get the truncate into the DAG earlier and give DAG combine more of a chance to optimize it.
We also have to fix unrolling to use the scalar setcc result type for the scalarized operation, and convert it to the required vector element type after the scalar operation. We have to observe the vector boolean contents when doing this conversion. The previous code was just taking the scalar result and putting it in the vector. But for X86 and AArch64 that would have only put a the boolean value in bit 0 of the element and left all other bits in the element 0. We need to ensure all bits in the element are the same. I'm using a select with constants here because that's what setcc unrolling in LegalizeVectorOps used.
Reviewers: spatel, RKSimon, nikic
Reviewed By: nikic
Subscribers: javed.absar, kristof.beyls, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58567
llvm-svn: 354753
As requested during review of D57601, be equally conservative for atomic MMOs as for volatile MMOs in all in tree backends. At the moment, all atomic MMOs are also volatile, but I'm about to change that.
Reviewed as part of https://reviews.llvm.org/D58490, with other backends still pending review.
llvm-svn: 354740
r354648 was a follow up to fix a regression "[X86] Add a DAG combine for (aext_vector_inreg (aext_vector_inreg X)) -> (aext_vector_inreg X) to fix a regression from my previous commit."
These were reverted in r354713 as their context depended on other patches that were reverted for a bug.
llvm-svn: 354734
Fixes https://bugs.llvm.org/show_bug.cgi?id=40805 introduced by
patterns added in D53676.
I'm removing the patterns entirely here, as they are not correct
in the general case. If necessary something more specific can be
added in the future.
Differential Revision: https://reviews.llvm.org/D58575
llvm-svn: 354733
Even on AVX1 we can pretty cheaply (VPERM2F128+VSHUFPD) permute a single v4f64/v4i64 input (on AVX2 its just a single VPERMPD), followed by a BLENDPD.
llvm-svn: 354729
Conversion from ConstantSDNode to MachineInstr sign extends immediates from their APInt representation to int64_t.
This commit makes sure we do the same for commuting. The tests changes show how this improves CSE. This issue was made worse by the MachineCSE using commuteInstruction to undo a commute. So we virtually guarantee the sign extend from isel would be lost.
The improved CSE also occurred with r354363, but that was reverted. I'm working to undo the revert, but wanted to get this fix in while it was easy to see the results.
llvm-svn: 354724
r354363 caused https://crbug.com/934963#c1, which has a plain C reduced
test case.
I also had to revert some dependent changes:
- r354648
- r354647
- r354640
- r354511
llvm-svn: 354713
If the the input type will be promoted to 128 bits its better to put a sign_extend_inreg/and in the 128 bit register before the split occurs. Otherwise we end up doing it on each half in the wider register.
Some of the overflow arithmetic tests are regressions, but I think we can make some improvement using getSetccResultType in DAG combine and/or type legalization.
llvm-svn: 354709
We record the type of the symbol (event/function/data/global) in the
MCWasmSymbol and so it should always be clear how to handle a relocation
based on the symbol itself.
The exception is a function which still needs the special @TYPEINDEX
then the relocation contains the signature rather than the address
of the functions.
Differential Revision: https://reviews.llvm.org/D58472
llvm-svn: 354697
As discussed in:
D56864
D58197
Always use the narrow (128-bit) instruction when possible.
We already had the signed int version of this transform.
llvm-svn: 354675
Only the 1st fold is attempted pre-legalization, but it requires
legal (simple) types too, so we don't need an EVT in any of the code.
llvm-svn: 354674
Filling a delay slot in 32bit jump instructions with a 16bit instruction
can cause issues. According to the documentation such an operation is
unpredictable.
This patch adds opcode Mips::PseudoIndirectBranch_MM alongside
Mips::PseudoIndirectBranch and other instructions that are expanded to jr
instruction and do not allow a 16bit instruction in their delay slots.
Patch by Mirko Brkusanin.
Differential Revision: https://reviews.llvm.org/D58507
llvm-svn: 354672
This adds a number of missing Thumb1 opcodes so that the peephole optimiser can
remove redundant CMP instructions.
Reapplying this after the first attempt broke non-thumb1 code as the t2ADDri
instruction can be used with frame indices. In thumb1 we use tADDframe.
Differential Revision: https://reviews.llvm.org/D57833
llvm-svn: 354667
This is exactly the same as arm mode, so for the instruction selector
tests we just extract them to a new file and run with the same checks
for both arm and thumb mode.
For the legalizer we need to update the tests for soft float a bit, but
only because BL and tBL are slightly different. We could be pedantic and
check that we get a well-formed BL for arm mode and a tBL for thumb, but
for the purposes of the legalizer test it's sufficient to just skip over
the predicate operands in the checks. Also note that we have the
pedantic checks in the divmod test, so we're covered.
llvm-svn: 354665
This was done in r321424 to prevent scheduling from reordering things. But now that we model FPCW as a dependency, I don't think the same scheduling we were trying to prevent can occur.
llvm-svn: 354628
This is a follow-up to D56864.
If we're extracting from a non-zero index before casting to FP,
then shuffle the vector and optionally narrow the vector before doing the cast:
cast (extelt V, C) --> extelt (cast (extract_subv (shuffle V, [C...]))), 0
This might be enough to close PR39974:
https://bugs.llvm.org/show_bug.cgi?id=39974
Differential Revision: https://reviews.llvm.org/D58197
llvm-svn: 354619
The trap instruction is intercepted by various runtime environments,
and instead of a crash it creates confusion.
This reapplies r354606 with a fix.
llvm-svn: 354611
An internal build is hitting asserts complaining about too many subtarget
features:
llvm/utils/TableGen/Types.cpp:42:
const char* llvm::getMinimalTypeForEnumBitfield(uint64_t):
Assertion `MaxIndex <= 64 && "Too many bits"' failed.
llvm/utils/TableGen/AsmMatcherEmitter.cpp:1476:
void {anonymous}::AsmMatcherInfo::buildInfo():
Assertion `SubtargetFeatures.size() <= 64 && "Too many subtarget features!"'
failed.
The short-term solution is to remove a few unused AssemblerPredicates to get
under the limit.
The long-term solution seems to be to revisit these asserts. E.g., rather than
hardcoded '64', use the standard sized std::bitset like the other places that
track subtarget features.
Differential Revision: https://reviews.llvm.org/D58516
llvm-svn: 354604
Allow load/store instructions with implied zero offset for compatibility with
GNU assembler.
Differential Revision: https://reviews.llvm.org/D57141
Patch by James Clarke.
llvm-svn: 354581
We currently bail if the target shuffle decodes to more than 2 input vectors, this change alters the input index to work for any number of inputs for when we drop that requirement.
llvm-svn: 354575
Commit r353303 added annotations when acquire semantics
were dropped from an instruction.
printAnnotation was called before printInstruction.
So if you didn't set a separate comment output stream
you got <comment><instr> instead of <instr><comment>
as expected.
To fix this move the new printAnnotation to after
the instruction is printed.
Differential Revision: https://reviews.llvm.org/D58059
llvm-svn: 354565
This adds a number of missing Thumb1 opcodes so that the peephole optimiser can
remove redundant CMP instructions.
Differential Revision: https://reviews.llvm.org/D57833
llvm-svn: 354564
During type promotion, sometimes we convert negative an add with a
negative constant into a sub with a positive constant. The loop that
performs this transformation has two issues:
- it iterates over a set, causing non-determinism.
- it breaks, instead of continuing, when it finds the first
non-negative operand.
Differential Revision: https://reviews.llvm.org/D58452
llvm-svn: 354557
Previously if we couldn't derive a prototype for a "no-prototype"
function from C we would leave it as is:
void foo(...)
With this change we instead give is an empty signature and remove
the "no-prototype" attribute.
This fixes the current wasm waterfall test failure.
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58488
llvm-svn: 354544
When we can't determine with certainty the signature of a function
import we pick the fist signature we find rather than error'ing out.
The resulting program might not do what is expected since we might pick
the wrong signature. However since undefined behavior in C to use the
same function with different signatures this seems better than refusing
to compile such programs.
Fixes PR40472
Differential Revision: https://reviews.llvm.org/D58304
llvm-svn: 354523
This change makes some basic type combinations for G_SHUFFLE_VECTOR legal, and
implements them with a very pessimistic TBL2 instruction in the selector.
For TBL2, support is also needed to generate constant pool entries and load from
them in order to materialize the mask register.
Currently supports <2 x s64> and <4 x s32> result types.
Differential Revision: https://reviews.llvm.org/D58466
llvm-svn: 354521
Second part of https://bugs.llvm.org/show_bug.cgi?id=40442.
This adds an extra UnrollVectorOverflowOp() method to SDAG, because
the general UnrollOverflowOp() method can't deal with multiple results.
Additionally we need to expand UMULO/SMULO during vector op
legalization, as it may result in unrolling, which may need additional
type legalization.
Differential Revision: https://reviews.llvm.org/D57997
llvm-svn: 354513
This avoids depending on the peephole pass to do load folding.
Also adds some load folding for some insert_subvector patterns that use blend.
All of this was found by temporarily adding TB_NO_FORWARD to the blend immediate entries in the load folding tables.
I've added -disable-peephole to some of the affected tests from that experiment to ensure we're testing isel patterns.
llvm-svn: 354511
We currently bail if the target shuffle decodes to more than 2 input vectors, this is some initial cleanup that still has the limit but generalizes the opindices to an array that will be necessary when we drop the limit.
llvm-svn: 354489
DAG combiner combines two shifts into shift + and with bitmask.
Avoid such combines for vectors since leaving two vector shifts
as they are produces better end results.
Differential Revision: https://reviews.llvm.org/D58225
llvm-svn: 354461
Summary:
Inc and Dec were at one point slow on Intel CPUs due to their tendency to cause partial flag stalls on P6 derived CPU cores. This is because these instructions are defined to preserve the carry flag. This partial flag stall issue persisted until Sandy Bridge when flag merging was changed to be handled as a data dependency instead of as a stall until retirement. Sandy Bridge and later CPUs rename the C flag separately from OSPAZ so there is no flag merge needed on INC/DEC to preserve the C flag.
Given these improvements I don't know why INC/DEC was ever considered slow on Sandy Bridge. If anything they should have been disabled on the earlier CPUs instead.
Note after this patch, INC/DEC are still considered slow on Silvermont, Goldmont, Knights Landing and our generic "x86-64" CPU.
Reviewers: spatel, RKSimon, chandlerc
Reviewed By: chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D58412
llvm-svn: 354436
As this has broken the lto bootstrap build for 3 days and is
showing a significant regression on the Dither_benchmark results (from
the LLVM benchmark suite) -- specifically, on the
BENCHMARK_FLOYD_DITHER_128, BENCHMARK_FLOYD_DITHER_256, and
BENCHMARK_FLOYD_DITHER_512; the others are unchanged. These have
regressed by about 28% on Skylake, 34% on Haswell, and over 40% on
Sandybridge.
This reverts commit r353923.
llvm-svn: 354434
Summary:
Those pseudo-instructions are making load/store instructions able to
load/store from/to a symbol, and its always using PC-relative addressing
to generating a symbol address.
Reviewers: asb, apazos, rogfer01, jrtc27
Differential Revision: https://reviews.llvm.org/D50496
llvm-svn: 354430
Summary:
- Make `ATOMIC_I`, `ATOMIC_NRI`, `AtomicLoad`, `AtomicStore` classes and
make other operations inherit from them
- Factor the common opcode prefix '0xfe' out from the opcodes into the
common class
- Reorder instructions in the order of increasing opcodes
Reviewers: tlively
Subscribers: dschuff, sbc100, jgravelle-google, sunfish, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58338
llvm-svn: 354421
Summary:
Fixed a bug in the routine in AsmParser that determines whether the
current instruction is a load or a store. Atomic instructions' prefixes
are not `atomic_` but `atomic.`, and all atomic instructions are also
memory instructions. Also fixed the printing format of atomic
instructions to match other memory instructions and added encoding tests
for atomic instructions.
Reviewers: aardappel, tlively
Subscribers: dschuff, sbc100, jgravelle-google, sunfish, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58337
llvm-svn: 354419
Summary:
Rename MemoryIndex to InitFlags and implement logic for determining
data segment layout in ObjectYAML and MC. Also adds a "passive" flag
for the .section assembler directive although this cannot be assembled
yet because the assembler does not support data sections.
Reviewers: sbc100, aardappel, aheejin, dschuff
Subscribers: jgravelle-google, hiraditya, sunfish, rupprecht, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57938
llvm-svn: 354397