This fixes a bug I introduced in a previous commit (r216033). Sign-/Zero-
extension from i1 cannot be folded into the ADDS/SUBS instructions. Instead both
operands have to be sign-/zero-extended with separate instructions.
Related to <rdar://problem/17913111>.
llvm-svn: 216073
This generates bitcode which is indistinguishable from what was
hand-written for int32 types in v[load|store]_impl.ll.
v4: Use vec2+scalar for vec3 load/stores to prevent corruption (per Tom)
v3: Also remove unused generic/lib/shared/v[load|store]_impl.ll
v2: (Per Matt Arsenault) Fix alignment issues with vector load stores
Signed-off-by: Aaron Watry <awatry@gmail.com>
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
CC: Matt Arsenault <Matthew.Arsenault@amd.com>
CC: Tom Stellard <thomas.stellard@amd.com>
llvm-svn: 216069
legalization stage. With those two optimizations, fewer signed/zero extension
instructions can be inserted, and then we can expose more opportunities to
Machine CSE pass in back-end.
llvm-svn: 216066
Summary:
Fixes http://llvm.org/bugs/show_bug.cgi?id=20016 reproducible on new
lea-5.ll case.
Also use RSP/RBP for x32 lea to save 1 byte used for 0x67 prefix in
ESP/EBP case.
Test Plan: lea tests modified to include x32/nacl and new test added
Reviewers: nadav, dschuff, t.p.northover
Subscribers: llvm-commits, zinovy.nis
Differential Revision: http://reviews.llvm.org/D4929
llvm-svn: 216065
LLVM generates illegal `rbit r0, #352` instruction for rbit intrinsic.
According to ARM ARM, rbit only takes register as argument, not immediate.
The correct instruction should be rbit <Rd>, <Rm>.
The bug was originally introduced in r211057.
Differential Revision: http://reviews.llvm.org/D4980
llvm-svn: 216064
Because declarations of these functions can appear in places like autoconf
checks, they have to be handled somehow, even though we do not support
vararg custom functions. We do so by printing a warning and calling the
uninstrumented function, as we do for unimplemented functions.
llvm-svn: 216042
Use FMOVWSr/FMOVXDr instead of FMOVSr/FMOVDr, which have the proper register
class to be used with the zero register. This makes the MachineInstruction
verifier happy again.
This is related to <rdar://problem/18027157>.
llvm-svn: 216040
We can prove that a 'sub' can be a 'sub nsw' under certain conditions:
- The sign bits of the operands is the same.
- Both operands have more than 1 sign bit.
The subtraction cannot be a signed overflow in either case.
llvm-svn: 216037
Factor out the ADDS/SUBS instruction emission code into helper functions and
make the helper functions more clever to support most of the different ADDS/SUBS
instructions the architecture support. This includes better immedediate support,
shift folding, and sign-/zero-extend folding.
This fixes <rdar://problem/17913111>.
llvm-svn: 216033
What it does:
- it introduces a concept of EncodingToType to the ObjCLanguageRuntime
The ObjC runtime has a "type encoding" feature that describes types as strings
The EncodingToType is a decoder for that format, making types out of type encoding strings
This feature already existed in some shape as we were using it to create method signatures out of the runtime, but this checkin extends the parser to support the full syntax, and moves things so that more parts of LLDB have access to this decoder
- it splits the ClassDescriptorV2 object to its own file, it was starting to grow too large
- it adds to the ClassDescriptor mechanism a notion of ivar storage; the ObjC runtime vends ivar information as well as method information
While ivar information is not ready for prime type (i.e. we don't want to add it to the runtime generated types for expression evaluator usage), there are potentially useful scenarios in which realizing ivar types could be useful. For now, the ClassDescriptor is going to hold ivar information directly. Existing code already allows describing ivars, this patch hooks those moving parts up so that one can actually ask a ClassDescriptor about ivars for the class it represents
and as a couple minor niceties:
- it makes it possible to retrieve the LLDB ClangASTContext that is associated to a clang::ASTContext
- it extends the ValueObject-to-ClassDescriptor API in the language runtime to deal correctly with base-class hierarchies
llvm-svn: 216026
Implement `uselistorder` and `uselistorder_bb` assembly directives,
which allow the use-list order to be recovered when round-tripping to
assembly.
This is the bulk of PR20515.
llvm-svn: 216025
In r216015 I missed propagating `OnlyIfReduced` through the inline
versions of `getGetElementPtr()` (I was relying on compile failures on
mismatches between the header and source signatures to get them all).
llvm-svn: 216023
This adds the missing test that I promised for r215753 to test the
materialization of the floating-point value +0.0.
Related to <rdar://problem/18027157>.
llvm-svn: 216019
Change `ConstantExpr` to follow the model the other constants are using:
only malloc a replacement if it's going to be used. This fixes a subtle
bug where if an API user had used `ConstantExpr::get()` already to
create the replacement but hadn't given it any users, we'd delete the
replacement.
This relies on r216015 to thread `OnlyIfReduced` through
`ConstantExpr::getWithOperands()`.
llvm-svn: 216016
In order to change `ConstantExpr::replaceUsesOfWithOnConstant()` to work
like other constants (e.g., using `ConstantArray::getImpl()`), thread
`OnlyIfReduced` through as necessary. When `OnlyIfReduced` is false,
there's no functionality change. When it's true, if there's no constant
folding or type changes `nullptr` is returned instead of the new
constant.
`ConstantExpr::replaceUsesOfWithOnConstant()` will be updated to use the
"true" version in a follow-up commit.
llvm-svn: 216015