With D24253 we can now use SelectionDAG::SignBitIsZero with vector operations.
This patch uses SelectionDAG::SignBitIsZero to recognise that a zero sign bit means that we can use a sitofp instead of a uitofp (which is not directly support on pre-AVX512 hardware).
While AVX512 does provide support for uitofp, the conversion to sitofp should not cause any regressions.
Differential Revision: https://reviews.llvm.org/D24343
llvm-svn: 281852
We were trying to avoid using a FrameIndex operand in non-pointer
operands in a convoluted way, and would break because of
using TargetFrameIndex. The TargetFrameIndex should only be used
in the case where it makes sense to fold it as part of the addressing
mode, otherwise it requires materialization like a normal constant.
This wasn't working reliably and failed in the added testcase, hitting
the assert when processing the frame index.
The TargetFrameIndex was coming from trying to produce an AssertZext
limiting the maximum stack size. I'm not sure this was correct to begin
with, because it is apparently possible to have a single workitem
dispatch that requires all 4G of private memory.
llvm-svn: 281824
This reduces the number of copies and reg_sequences
when using fp constant vectors. This significantly
reduces the code size in local-stack-alloc-bug.ll
llvm-svn: 281822
Summary: i8, i16, and f16 values are not extended to 32-bit in the HSA kernel ABI.
Reviewers: arsenm
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, llvm-commits, yaxunl
Differential Revision: https://reviews.llvm.org/D24621
llvm-svn: 281789
These clean up some unnecessary or instructions in
cases with complex loops.
In the original testcase I noticed this, the same
or with exec was repeated 5 or 6 times in a row. With
this only one is emitted or sometimes a copy.
llvm-svn: 281786
Summary:
The main challenge in lowering kernel arguments for AMDGPU is determing the
memory type of the argument. The generic calling convention code assumes
that only legal register types can be stored in memory, but this is not the
case for AMDGPU.
This consolidates all the logic AMDGPU uses for deducing memory types into a single
function. This will make it much easier to support different ABIs in the future.
Reviewers: arsenm
Subscribers: arsenm, wdng, nhaehnle, llvm-commits, yaxunl
Differential Revision: https://reviews.llvm.org/D24614
llvm-svn: 281781
Summary:
mesa3d will use the same kernel calling convention as amdhsa, but it will
handle everything else like the default 'unknown' OS type.
Reviewers: arsenm
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: https://reviews.llvm.org/D22783
llvm-svn: 281779
Recommitting after fixing AsmParser initialization and X86 inline asm
error cleanup.
Allow errors to be deferred and emitted as part of clean up to simplify
and shorten Assembly parser code. This will allow error messages to be
emitted in helper functions and be modified by the caller which has
better context.
As part of this many minor cleanups to the Parser:
* Unify parser cleanup on error
* Add Workaround for incorrect return values in ParseDirective instances
* Tighten checks on error-signifying return values for parser functions
and fix in-tree TargetParsers to be more consistent with the changes.
* Fix AArch64 test cases checking for spurious error messages that are
now fixed.
These changes should be backwards compatible with current Target Parsers
so long as the error status are correctly returned in appropriate
functions.
Reviewers: rnk, majnemer
Subscribers: aemerson, jyknight, llvm-commits
Differential Revision: https://reviews.llvm.org/D24047
llvm-svn: 281762
We used to only support instructions with same-type operands.
Instead, use the per-register type information to map each
operand more accurately.
llvm-svn: 281734
When a phi node is finally lowered to a machine instruction it is
important that the lowered "load" instruction is placed before the
associated DEBUG_VALUE entry describing the value loaded.
Renamed the existing SkipPHIsAndLabels to SkipPHIsLabelsAndDebug to
more fully describe that it also skips debug entries. Then used the
"new" function SkipPHIsAndLabels when the debug information should not
be skipped when placing the lowered "load" instructions so that it is
placed before the debug entries.
Differential Revision: https://reviews.llvm.org/D23760
llvm-svn: 281727
For compatiblity with binutils, define these instructions to take
two registers with a 16bit unsigned immediate. Both of the registers
have to be same for dahi and dati.
Reviewers: vkalintiris, dsanders, zoran.jovanovic
Differential Review: https://reviews.llvm.org/D21473
llvm-svn: 281724
(and the same for SREM)
This was causing buildbot failures earlier (time outs in the LNT suite).
However, we haven't been able to reproduce this and are suspecting this
was caused by another (reverted) patch.
llvm-svn: 281719
Summary:
`TargetLoweringObjectFile` can be re-used and thus `TargetLoweringObjectFile::Initialize()`
can be called multiple times causing `Mang` pointer memory leak.
Reviewers: echristo
Subscribers: llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D24659
llvm-svn: 281718
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
This recommit contains fixes for a nasty bug related to fast-isel fallback - because
fast-isel doesn't know about this optimization, if it runs and emits references to
a string that we inline (because fast-isel fell back to SDAG) we will end up
with an inlined string and also an out-of-line string, and we won't emit the
out-of-line string, causing backend failures.
It also contains fixes for emitting .text relocations which made the sanitizer
bots unhappy.
llvm-svn: 281715
Currently, the machine combiner can proceed matching when -ffast-math is on.
It should also match when only -ffp-contract=fast is specified as was the
case before when DAGCombiner was doing the job.
Patch by: Abderrazek Zaafrani <a.zaafrani@samsung.com>.
Differential Revision: https://reviews.llvm.org/D24366
llvm-svn: 281649
Unfortunately we can't enable it for all N64 because it is not yet possible to
distinguish N32 from N64.
N64 has been confirmed to produce identical (within reason) objects to GAS
during stage 2 of compiler recursion on N64-abit Fedora. Unfortunately,
Fedora's triples do not distinguish N32 from N64 so I can't enable it by
default there. I'm currently repeating this testing for Debian mips64el but
it's very unlikely to produce a different result.
Patch by: Daniel Sanders
Reviewers: sdardis
Differential Review: https://reviews.llvm.org/D22678
llvm-svn: 281607
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
This recommit contains fixes for a nasty bug related to fast-isel fallback - because
fast-isel doesn't know about this optimization, if it runs and emits references to
a string that we inline (because fast-isel fell back to SDAG) we will end up
with an inlined string and also an out-of-line string, and we won't emit the
out-of-line string, causing backend failures.
llvm-svn: 281604
It was only really there as a sentinel when instructions had to have precisely
one type. Now that registers are typed, each register really has to have a type
that is sized.
llvm-svn: 281599
Otherwise everything that needs to work out what size they are has to keep a
DataLayout handy, which is a bit silly and very annoying.
llvm-svn: 281597
Until AVX512DQ we only support i64/vXi64 sitofp conversion as scalars.
This patch sees if the sign bit extends far enough that we can truncate to a i32 type and then perform sitofp without loss of precision.
Differential Revision: https://reviews.llvm.org/D24345
llvm-svn: 281502
This addresses a TODO to handle operations besides and. This
also starts eliminating no-op operations with a constant that
can emerge later.
llvm-svn: 281488
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
llvm-svn: 281484
This patch corresponds to review:
https://reviews.llvm.org/D24021
In the initial implementation of this instruction, I forgot to account for
variable indices. This patch fixes PR30189 and should probably be merged into
3.9.1 (I'll open a bug according to the new instructions).
llvm-svn: 281479
There is currently no codegen for Power9 that depends on the directive
so this is NFC for now but will be important in the future. This was
missed in r268950 so I'm adding it now.
llvm-svn: 281473
Cleanup/change the code that checks for possible tailcall conventions to
look the same as the one in the X86 target. This makes the distinction
between calling conventions that can guarnatee tailcalls and the ones
that may tailcall more obvious.
- Add Swift to the mayTailCall list
- PreserveMost seemed to be incorrectly part of the guarnteed tail call
list, move it to the mayTailCall list.
llvm-svn: 281376
Recommitting after fixing AsmParser Initialization.
Allow errors to be deferred and emitted as part of clean up to simplify
and shorten Assembly parser code. This will allow error messages to be
emitted in helper functions and be modified by the caller which has
better context.
As part of this many minor cleanups to the Parser:
* Unify parser cleanup on error
* Add Workaround for incorrect return values in ParseDirective instances
* Tighten checks on error-signifying return values for parser functions
and fix in-tree TargetParsers to be more consistent with the changes.
* Fix AArch64 test cases checking for spurious error messages that are
now fixed.
These changes should be backwards compatible with current Target Parsers
so long as the error status are correctly returned in appropriate
functions.
Reviewers: rnk, majnemer
Subscribers: aemerson, jyknight, llvm-commits
Differential Revision: https://reviews.llvm.org/D24047
llvm-svn: 281336
Before, only Thumb functions were marked as ".code 16". These
".code x" directives are effective until the next directive of its
kind is encountered. Therefore, in code with interleaved ARM and
Thumb functions, it was possible to declare a function as ARM and
end up with a Thumb function after assembly. A test has been added.
An existing test has also been fixed to take this change into
account.
Reviewers: aschwaighofer, t.p.northover, jmolloy, rengolin
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D24337
llvm-svn: 281324
For the common pattern (CMPZ (AND x, #bitmask), #0), we can do some more efficient instruction selection if the bitmask is one consecutive sequence of set bits (32 - clz(bm) - ctz(bm) == popcount(bm)).
1) If the bitmask touches the LSB, then we can remove all the upper bits and set the flags by doing one LSLS.
2) If the bitmask touches the MSB, then we can remove all the lower bits and set the flags with one LSRS.
3) If the bitmask has popcount == 1 (only one set bit), we can shift that bit into the sign bit with one LSLS and change the condition query from NE/EQ to MI/PL (we could also implement this by shifting into the carry bit and branching on BCC/BCS).
4) Otherwise, we can emit a sequence of LSLS+LSRS to remove the upper and lower zero bits of the mask.
1-3 require only one 16-bit instruction and can elide the CMP. 4 requires two 16-bit instructions but can elide the CMP and doesn't require materializing a complex immediate, so is also a win.
llvm-svn: 281323
The changes made in r269352, r269353 and r269354 to support the
transformation of the ldr rd,=immediate to mov introduced a regression
from 3.8 (ldr.w rd, =immediate) not supported.
This change puts support back in for ldr.w by means of a t2InstAlias for
the .w form. The .w is ignored in ARM state and propagated to the ldr in
Thumb2.
llvm-svn: 281319
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
llvm-svn: 281314
descriptions now tag add instructions, and the Hexagon backend is using this to
identify loop induction statements.
Patch by Sam Parker and Sjoerd Meijer.
Differential Revision: https://reviews.llvm.org/D23601
llvm-svn: 281304
Optimized (truncate (assertzext x) to i1) and anyext i1 to i8/16/32.
Optimization of this patterns is a one more step towards i1 optimization on AVX-512.
Differential Revision: https://reviews.llvm.org/D24456
llvm-svn: 281302
We currently return 4 for stackmaps and patchpoints, which is very optimistic
and can in rare cases cause the branch relaxation pass to fail to relax certain
branches.
This patch causes getInstSizeInBytes to return a pessimistic estimate of the
size as the number of bytes requested in the stackmap/patchpoint. In the future,
we could provide a more accurate estimate by sharing some of the logic in
AArch64::LowerSTACKMAP/PATCHPOINT.
Fixes part of https://llvm.org/bugs/show_bug.cgi?id=28750
Differential Revision: https://reviews.llvm.org/D24073
llvm-svn: 281301
That confuses e.g. machine basic block placement, which then doesn't
realize that control can fall through a block that ends with a conditional
tail call. Instead, isBranch=1 should be set.
Also, mark EFLAGS as used by these instructions.
llvm-svn: 281281
Allow errors to be deferred and emitted as part of clean up to simplify
and shorten Assembly parser code. This will allow error messages to be
emitted in helper functions and be modified by the caller which has
better context.
As part of this many minor cleanups to the Parser:
* Unify parser cleanup on error
* Add Workaround for incorrect return values in ParseDirective instances
* Tighten checks on error-signifying return values for parser functions
and fix in-tree TargetParsers to be more consistent with the changes.
* Fix AArch64 test cases checking for spurious error messages that are
now fixed.
These changes should be backwards compatible with current Target Parsers
so long as the error status are correctly returned in appropriate
functions.
Reviewers: rnk, majnemer
Subscribers: aemerson, jyknight, llvm-commits
Differential Revision: https://reviews.llvm.org/D24047
llvm-svn: 281249
r280832 added 32-bit support for emitting conditional tail-calls, but
dropped imp-used parameter registers. This went unnoticed until
r281113, which added 64-bit support, as this is only exposed with
parameter passing via registers.
Don't drop the imp-used parameters.
llvm-svn: 281223
Summary: This removes disabled instructions from match tables so we will not match them at all.
Reviewers: tstellarAMD, vpykhtin, artem.tamazov
Subscribers: wdng, nhaehnle, arsenm
Differential Revision: https://reviews.llvm.org/D24452
llvm-svn: 281216
For the common pattern (CMPZ (AND x, #bitmask), #0), we can do some more efficient instruction selection if the bitmask is one consecutive sequence of set bits (32 - clz(bm) - ctz(bm) == popcount(bm)).
1) If the bitmask touches the LSB, then we can remove all the upper bits and set the flags by doing one LSLS.
2) If the bitmask touches the MSB, then we can remove all the lower bits and set the flags with one LSRS.
3) If the bitmask has popcount == 1 (only one set bit), we can shift that bit into the sign bit with one LSLS and change the condition query from NE/EQ to MI/PL (we could also implement this by shifting into the carry bit and branching on BCC/BCS).
4) Otherwise, we can emit a sequence of LSLS+LSRS to remove the upper and lower zero bits of the mask.
1-3 require only one 16-bit instruction and can elide the CMP. 4 requires two 16-bit instructions but can elide the CMP and doesn't require materializing a complex immediate, so is also a win.
llvm-svn: 281215
If a constant is unamed_addr and is only used within one function, we can save
on the code size and runtime cost of an indirection by changing the global's storage
to inside the constant pool. For example, instead of:
ldr r0, .CPI0
bl printf
bx lr
.CPI0: &format_string
format_string: .asciz "hello, world!\n"
We can emit:
adr r0, .CPI0
bl printf
bx lr
.CPI0: .asciz "hello, world!\n"
This can cause significant code size savings when many small strings are used in one
function (4 bytes per string).
llvm-svn: 281213
Now that MachineBasicBlock::reverse_instr_iterator knows when it's at
the end (since r281168 and r281170), implement
MachineBasicBlock::reverse_iterator directly on top of an
ilist::reverse_iterator by adding an IsReverse template parameter to
MachineInstrBundleIterator. This replaces another hard-to-reason-about
use of std::reverse_iterator on list iterators, matching the changes for
ilist::reverse_iterator from r280032 (see the "out of scope" section at
the end of that commit message). MachineBasicBlock::reverse_iterator
now has a handle to the current node and has obvious invalidation
semantics.
r280032 has a more detailed explanation of how list-style reverse
iterators (invalidated when the pointed-at node is deleted) are
different from vector-style reverse iterators like std::reverse_iterator
(invalidated on every operation). A great motivating example is this
commit's changes to lib/CodeGen/DeadMachineInstructionElim.cpp.
Note: If your out-of-tree backend deletes instructions while iterating
on a MachineBasicBlock::reverse_iterator or converts between
MachineBasicBlock::iterator and MachineBasicBlock::reverse_iterator,
you'll need to update your code in similar ways to r280032. The
following table might help:
[Old] ==> [New]
delete &*RI, RE = end() delete &*RI++
RI->erase(), RE = end() RI++->erase()
reverse_iterator(I) std::prev(I).getReverse()
reverse_iterator(I) ++I.getReverse()
--reverse_iterator(I) I.getReverse()
reverse_iterator(std::next(I)) I.getReverse()
RI.base() std::prev(RI).getReverse()
RI.base() ++RI.getReverse()
--RI.base() RI.getReverse()
std::next(RI).base() RI.getReverse()
(For more details, have a look at r280032.)
llvm-svn: 281172
Summary:
With this change (plus some changes to prevent !invariant from being
clobbered within llvm), clang will be able to model the __ldg CUDA
builtin as an invariant load, rather than as a target-specific llvm
intrinsic. This will let the optimizer play with these loads --
specifically, we should be able to vectorize them in the load-store
vectorizer.
Reviewers: tra
Subscribers: jholewinski, hfinkel, llvm-commits, chandlerc
Differential Revision: https://reviews.llvm.org/D23477
llvm-svn: 281152
Summary:
An IR load can be invariant, dereferenceable, neither, or both. But
currently, MI's notion of invariance is IR-invariant &&
IR-dereferenceable.
This patch splits up the notions of invariance and dereferenceability at
the MI level. It's NFC, so adds some probably-unnecessary
"is-dereferenceable" checks, which we can remove later if desired.
Reviewers: chandlerc, tstellarAMD
Subscribers: jholewinski, arsenm, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D23371
llvm-svn: 281151
Summary:
I want to separate out the notions of invariance and dereferenceability
at the MI level, so that they correspond to the equivalent concepts at
the IR level. (Currently an MI load is MI-invariant iff it's
IR-invariant and IR-dereferenceable.)
First step is renaming this function.
Reviewers: chandlerc
Subscribers: MatzeB, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D23370
llvm-svn: 281125
If the literal is being folded into src0, it doesn't matter
if it's an SGPR because it's being replaced with the literal.
Also fixes initially selecting 32-bit versions of some instructions
which also confused commuting.
llvm-svn: 281117
This extends the optimization in r280832 to also work for 64-bit. The only
quirk is that we can't do this for 64-bit Windows (yet).
Differential Revision: https://reviews.llvm.org/D24423
llvm-svn: 281113
Summary:
Previously these only worked via NVPTX-specific intrinsics.
This change will allow us to convert these target-specific intrinsics
into the general LLVM versions, allowing existing LLVM passes to reason
about their behavior.
It also gets us some minor codegen improvements as-is, from situations
where we canonicalize code into one of these llvm intrinsics.
Reviewers: majnemer
Subscribers: llvm-commits, jholewinski, tra
Differential Revision: https://reviews.llvm.org/D24300
llvm-svn: 281092
Move the target specific setup into the target specific lowering setup. As
pointed out by Anton, the initial change was moving this too high up the stack
resulting in a violation of the layering (the target generic code path setup
target specific bits). Sink this into the ARM specific setup. NFC.
llvm-svn: 281088
Summary:
Prevously assembler parsed all literals as either 32-bit integers or 32-bit floating-point values. Because of this we couldn't support f64 literals.
E.g. in instruction "v_fract_f64 v[0:1], 0.5", literal 0.5 was encoded as 32-bit literal 0x3f000000, which is incorrect and will be interpreted as 3.0517578125E-5 instead of 0.5. Correct encoding is inline constant 240 (optimal) or 32-bit literal 0x3FE00000 at least.
With this change the way immediate literals are parsed is changed. All literals are always parsed as 64-bit values either integer or floating-point. Then we convert parsed literals to correct form based on information about type of operand parsed (was literal floating or binary) and type of expected instruction operands (is this f32/64 or b32/64 instruction).
Here are rules how we convert literals:
- We parsed fp literal:
- Instruction expects 64-bit operand:
- If parsed literal is inlinable (e.g. v_fract_f64_e32 v[0:1], 0.5)
- then we do nothing this literal
- Else if literal is not-inlinable but instruction requires to inline it (e.g. this is e64 encoding, v_fract_f64_e64 v[0:1], 1.5)
- report error
- Else literal is not-inlinable but we can encode it as additional 32-bit literal constant
- If instruction expect fp operand type (f64)
- Check if low 32 bits of literal are zeroes (e.g. v_fract_f64 v[0:1], 1.5)
- If so then do nothing
- Else (e.g. v_fract_f64 v[0:1], 3.1415)
- report warning that low 32 bits will be set to zeroes and precision will be lost
- set low 32 bits of literal to zeroes
- Instruction expects integer operand type (e.g. s_mov_b64_e32 s[0:1], 1.5)
- report error as it is unclear how to encode this literal
- Instruction expects 32-bit operand:
- Convert parsed 64 bit fp literal to 32 bit fp. Allow lose of precision but not overflow or underflow
- Is this literal inlinable and are we required to inline literal (e.g. v_trunc_f32_e64 v0, 0.5)
- do nothing
- Else report error
- Do nothing. We can encode any other 32-bit fp literal (e.g. v_trunc_f32 v0, 10000000.0)
- Parsed binary literal:
- Is this literal inlinable (e.g. v_trunc_f32_e32 v0, 35)
- do nothing
- Else, are we required to inline this literal (e.g. v_trunc_f32_e64 v0, 35)
- report error
- Else, literal is not-inlinable and we are not required to inline it
- Are high 32 bit of literal zeroes or same as sign bit (32 bit)
- do nothing (e.g. v_trunc_f32 v0, 0xdeadbeef)
- Else
- report error (e.g. v_trunc_f32 v0, 0x123456789abcdef0)
For this change it is required that we know operand types of instruction (are they f32/64 or b32/64). I added several new register operands (they extend previous register operands) and set operand types to corresponding types:
'''
enum OperandType {
OPERAND_REG_IMM32_INT,
OPERAND_REG_IMM32_FP,
OPERAND_REG_INLINE_C_INT,
OPERAND_REG_INLINE_C_FP,
}
'''
This is not working yet:
- Several tests are failing
- Problems with predicate methods for inline immediates
- LLVM generated assembler parts try to select e64 encoding before e32.
More changes are required for several AsmOperands.
Reviewers: vpykhtin, tstellarAMD
Subscribers: arsenm, kzhuravl, artem.tamazov
Differential Revision: https://reviews.llvm.org/D22922
llvm-svn: 281050
The CMPZ #0 disappears during peepholing, leaving just a tADDi3, tADDi8 or t2ADDri. This avoids having to materialize the expensive negative constant in Thumb-1, and allows a shrinking from a 32-bit CMN to a 16-bit ADDS in Thumb-2.
llvm-svn: 281040
These instructions were only necessary when type information was stored in the
MachineInstr (because only generic MachineInstrs possessed a type). Now that
it's in MachineRegisterInfo, COPY and PHI work fine.
llvm-svn: 281037
We want each register to have a canonical type, which means the best place to
store this is in MachineRegisterInfo rather than on every MachineInstr that
happens to use or define that register.
Most changes following from this are pretty simple (you need an MRI anyway if
you're going to be doing any transformations, so just check the type there).
But legalization doesn't really want to check redundant operands (when, for
example, a G_ADD only ever has one type) so I've made use of MCInstrDesc's
operand type field to encode these constraints and limit legalization's work.
As an added bonus, more validation is possible, both in MachineVerifier and
MachineIRBuilder (coming soon).
llvm-svn: 281035
Summary:
Also removed duplicate code from AMDGPUTargetAsmStreamer.
This change only change how amd_kernel_code_t is parsed and printed. No variable names are changed.
Reviewers: vpykhtin, tstellarAMD
Subscribers: arsenm, wdng, nhaehnle
Differential Revision: https://reviews.llvm.org/D24296
llvm-svn: 281028
This avoids us doing a completely unneeded "cmp r0, #0" after a flag-setting instruction if we only care about the Z or C flags.
Add LSL/LSR to the whitelist while we're here and add testing. This code could really do with a spring clean.
llvm-svn: 281027
As part of this effort, remove MipsFCmp nodes and use tablegen
patterns rather than custom lowering through C++.
Unexpectedly, this improves codesize for microMIPS as previous floating
point setcc expansions would materialize 0 and 1 into GPRs before using
the relevant mov[tf].[sd] instruction. Now $zero is used directly.
Reviewers: dsanders, vkalintiris, zoran.jovanovic
Differential Review: https://reviews.llvm.org/D23118
llvm-svn: 281022
The x64 ABI has two major function types:
- frame functions
- leaf functions
A frame function is one which requires a stack frame. A leaf function
is one which does not. A frame function may or may not have a frame
pointer.
A leaf function does not require a stack frame and may never modify SP
except via a return (RET, tail call via JMP).
A frame function which has a frame pointer is permitted to use the LEA
instruction in the epilogue, a frame function without which doesn't
establish a frame pointer must use ADD to adjust the stack pointer epilogue.
Fun fact: Leaf functions don't require a function table entry
(associated PDATA/XDATA).
llvm-svn: 281006
The REX prefix should be used on indirect jmps, but not direct ones.
For direct jumps, the unwinder looks at the offset to determine if
it's inside the current function.
Differential Revision: https://reviews.llvm.org/D24359
llvm-svn: 281003
Fix the .arch asm parser to use the full set of features for the architecture
and any extensions on the command line. Add and update testcases accordingly
as well as add an extension that was used but not supported.
llvm-svn: 280971
And associated commits, as they broke the Thumb bots.
This reverts commit r280935.
This reverts commit r280891.
This reverts commit r280888.
llvm-svn: 280967
I mised the check that it had to support ARM to work. This commit tries
to fix that, to make sure we don't emit ARM code in Thumb-only mode.
llvm-svn: 280935
Materializing something like "-3" can be done as 2 instructions:
MOV r0, #3
MVN r0, r0
This has a cost of 2, not 3. It looks like we were already trying to detect this pattern in TII::getIntImmCost(), but were taking the complement of the zero-extended value instead of the sign-extended value which is unlikely to ever produce a number < 256.
There were no tests failing after changing this... :/
llvm-svn: 280928
This reverts commit r280808.
It is possible that this change results in an infinite loop. This
is causing timeouts in some tests on ARM, and a Chromebook bot is
failing.
llvm-svn: 280918
This is a port of XRay to ARM 32-bit, without Thumb support yet. The XRay instrumentation support is moving up to AsmPrinter.
This is one of 3 commits to different repositories of XRay ARM port. The other 2 are:
1. https://reviews.llvm.org/D23932 (Clang test)
2. https://reviews.llvm.org/D23933 (compiler-rt)
Differential Revision: https://reviews.llvm.org/D23931
llvm-svn: 280888
Shadow uses need to be analyzed together, since each individual shadow
will only have a partial reaching def. All shadows together may cover
a given register ref, while each individual shadow may not.
llvm-svn: 280855
The patch is to fix PR30298, which is caused by rL272694. The solution is to
bail out if the target has no SSE2.
Differential Revision: https://reviews.llvm.org/D24288
llvm-svn: 280837
When branching to a block that immediately tail calls, it is possible to fold
the call directly into the branch if the call is direct and there is no stack
adjustment, saving one byte.
Example:
define void @f(i32 %x, i32 %y) {
entry:
%p = icmp eq i32 %x, %y
br i1 %p, label %bb1, label %bb2
bb1:
tail call void @foo()
ret void
bb2:
tail call void @bar()
ret void
}
before:
f:
movl 4(%esp), %eax
cmpl 8(%esp), %eax
jne .LBB0_2
jmp foo
.LBB0_2:
jmp bar
after:
f:
movl 4(%esp), %eax
cmpl 8(%esp), %eax
jne bar
.LBB0_1:
jmp foo
I don't expect any significant size savings from this (on a Clang bootstrap I
saw 288 bytes), but it does make the code a little tighter.
This patch only does 32-bit, but 64-bit would work similarly.
Differential Revision: https://reviews.llvm.org/D24108
llvm-svn: 280832
OpenCL kernels have hidden kernel arguments for global offset and printf buffer. For consistency, these hidden argument should be included in the runtime metadata. Also updated kernel argument kind metadata.
Differential Revision: https://reviews.llvm.org/D23424
llvm-svn: 280829
Summary:
This saves a library call to __aeabi_uidivmod. However, the
processor must feature hardware division in order to benefit from
the transformation.
Reviewers: scott-0, jmolloy, compnerd, rengolin
Subscribers: t.p.northover, compnerd, aemerson, rengolin, samparker, llvm-commits
Differential Revision: https://reviews.llvm.org/D24133
llvm-svn: 280808
Summary:
The o32 ABI doesn't not support the TImode helpers. For the time being,
disable just the shift libcalls as they break recursive builds on MIPS.
Reviewers: sdardis
Subscribers: llvm-commits, sdardis
Differential Revision: https://reviews.llvm.org/D24259
llvm-svn: 280798
When folding an addi into a memory access that can take an immediate offset, we
were implicitly assuming that the existing offset was zero. This was incorrect.
If we're dealing with an addi with a plain constant, we can add it to the
existing offset (assuming that doesn't overflow the immediate, etc.), but if we
have anything else (i.e. something that will become a relocation expression),
we'll go back to requiring the existing immediate offset to be zero (because we
don't know what the requirements on that relocation expression might be - e.g.
maybe it is paired with some addis in some relevant way).
On the other hand, when dealing with a plain addi with a regular constant
immediate, the alignment restrictions (from the TOC base pointer, etc.) are
irrelevant.
I've added the test case from PR30280, which demonstrated the bug, but also
demonstrates a missed optimization opportunity (i.e. we don't need the memory
accesses at all).
Fixes PR30280.
llvm-svn: 280789
The previous commit (r280368 - https://reviews.llvm.org/D23313) does not cover AVX-512F, KNL set.
FNEG(x) operation is lowered to (bitcast (vpxor (bitcast x), (bitcast constfp(0x80000000))).
It happens because FP XOR is not supported for 512-bit data types on KNL and we use integer XOR instead.
I added pattern match for integer XOR.
Differential Revision: https://reviews.llvm.org/D24221
llvm-svn: 280785
- Implemented amdgpu-flat-work-group-size attribute
- Implemented amdgpu-num-active-waves-per-eu attribute
- Implemented amdgpu-num-sgpr attribute
- Implemented amdgpu-num-vgpr attribute
- Dynamic LDS constraints are in a separate patch
Patch by Tom Stellard and Konstantin Zhuravlyov
Differential Revision: https://reviews.llvm.org/D21562
llvm-svn: 280747
Summary:
I put this code here, because I want to re-use it in a few other places.
This supersedes some of the immediate folding code we have in SIFoldOperands.
I think the peephole optimizers is probably a better place for folding
immediates into copies, since it does some register coalescing in the same time.
This will also make it easier to transition SIFoldOperands into a smarter pass,
where it looks at all uses of instruction at once to determine the optimal way to
fold operands. Right now, the pass just considers one operand at a time.
Reviewers: arsenm
Subscribers: wdng, nhaehnle, arsenm, llvm-commits, kzhuravl
Differential Revision: https://reviews.llvm.org/D23402
llvm-svn: 280744
This was erroneously checked-in for 64 bits while trying to find if there was a way to get 64 bit atomicity in Leon processors. There is not and this change should not have been checked-in. There is no unit test for this as the existing unit tests test for behaviour to 32 bits, which was the original intention of the code.
llvm-svn: 280710
LLVM PR/29052 highlighted that FastISel for MIPS attempted to lower
arguments assuming that it was using the paired 32bit registers to
perform operations for f64. This mode of operation is not supported
for MIPSR6.
This patch resolves the reported issue by adding additional checks
for unsupported floating point unit configuration.
Thanks to mike.k for reporting this issue!
Reviewers: seanbruno, vkalintiris
Differential Review: https://reviews.llvm.org/D23795
llvm-svn: 280706
Unlike PPC64, PPC32/SVRV4 does not have red zone. In the absence of it
there is no guarantee that this part of the stack will not be modified
by any interrupt. To avoid this, make sure to claim the stack frame first
before storing into it.
This fixes https://llvm.org/bugs/show_bug.cgi?id=26519.
Differential Revision: https://reviews.llvm.org/D24093
llvm-svn: 280705
We need to bitcast the index operand to a floating point type so that it matches the result type. If not then the passthru part of the DAG will be a bitcast from the index's original type to the destination type. This makes it very difficult to match. The other option would be to add 5 sets of patterns for every other possible type.
llvm-svn: 280696
This is a Windows ARM specific issue. If the code path in the if conversion
ends up using a relocation which will form a IMAGE_REL_ARM_MOV32T, we end up
with a bundle to ensure that the mov.w/mov.t pair is not split up. This is
normally fine, however, if the branch is also predicated, then we end up trying
to predicate the bundle.
For now, report a bundle as being unpredicatable. Although this is false, this
would trigger a failure case previously anyways, so this is no worse. That is,
there should not be any code which would previously have been if converted and
predicated which would not be now.
Under certain circumstances, it may be possible to "predicate the bundle". This
would require scanning all bundle instructions, and ensure that the bundle
contains only predicatable instructions, and converting the bundle into an IT
block sequence. If the bundle is larger than the maximal IT block length (4
instructions), it would require materializing multiple IT blocks from the single
bundle.
llvm-svn: 280689
The code is now written in terms of source and dest classes with feature checks inside each type of copy instead of having separate functions for each feature set.
llvm-svn: 280673
Previously we were extending to copying the whole ZMM register. The register allocator shouldn't use XMM16-31 or YMM16-31 in this configuration as the instructions to spill them aren't available.
llvm-svn: 280648
The only way to select them was in AVX512 mode because EVEX VMOVSS/SD was below them and the patterns weren't qualified properly for AVX only. So if you happened to have an aligned FR32/FR64 load in AVX512 you could get a VEX encoded VMOVAPS/VMOVAPD.
I tried to search back through history and it seems like these instructions were probably unselectable for at least 5 years, at least to the time the VEX versions were added. But I can't prove they ever were.
llvm-svn: 280644
We used to compute the padding contributions to the block sizes during branch
relaxation only at the start of the transformation. As we perform branch
relaxation, we change the sizes of the blocks, and so the amount of inter-block
padding might change. Accordingly, we need to recompute the (alignment-based)
padding in between every iteration on our way toward the fixed point.
Unfortunately, I don't have a test case (and none was provided in the bug
report), and while this obviously seems needed, algorithmically, I don't have
any way of generating a small and/or non-fragile regression test.
llvm-svn: 280626
As it turns out, whether we zero-extend or sign-extend i8/i16 constants, which
are illegal types promoted to i32 on PowerPC, is a choice constrained by
assumptions within the infrastructure. Specifically, the logic in
FunctionLoweringInfo::ComputePHILiveOutRegInfo assumes that constant PHI
operands will be zero extended, and so, at least when materializing constants
that are PHI operands, we must do the same.
The rest of our fast-isel implementation does not appear to depend on the fact
that we were sign-extending i8/i16 constants, and all other targets also appear
to zero-extend small-bitwidth constants in fast-isel; we'll now do the same (we
had been doing this only for i1 constants, and sign-extending the others).
Fixes PR27721.
llvm-svn: 280614
I'm not sure if this should be considered a bug in
copyImplicitOps or not, but implicit operands that are part
of the static instruction definition should not be copied.
llvm-svn: 280594
Summary:
This contains two changes that reduce the time spent in WQM, with the
intention of reducing bandwidth required by VMEM loads:
1. Sampling instructions by themselves don't need to run in WQM, only their
coordinate inputs need it (unless of course there is a dependent sampling
instruction). The initial scanInstructions step is modified accordingly.
2. When switching back from WQM to Exact, switch back as soon as possible.
This affects the logic in processBlock.
This should always be a win or at best neutral.
There are also some cleanups (e.g. remove unused ExecExports) and some new
debugging output.
Reviewers: arsenm, tstellarAMD, mareko
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: http://reviews.llvm.org/D22092
llvm-svn: 280590
Summary:
This fixes a rare bug in polygon stippling with non-monolithic pixel shaders.
The underlying problem is as follows: the prolog part contains the polygon
stippling sequence, i.e. a kill. The main part then enables WQM based on the
_reduced_ exec mask, effectively undoing most of the polygon stippling.
Since we cannot know whether polygon stippling will be used, the main part
of a non-monolithic shader must always return to exact mode to fix this
problem.
Reviewers: arsenm, tstellarAMD, mareko
Subscribers: arsenm, llvm-commits, kzhuravl
Differential Revision: https://reviews.llvm.org/D23131
llvm-svn: 280589
readlane/writelane do not support using m0 as the output/input.
Constrain the register class of spill vregs to try to avoid this,
but also handle spilling of the physreg when necessary by inserting
an additional copy to a normal SGPR.
llvm-svn: 280584