We have done some predicate and feature refactoring lately but
did not upstream it. This is to sync.
Differential revision: https://reviews.llvm.org/D60292
llvm-svn: 357791
The test should really be checking for the property directly in the
code object headers, but there are problems with this. I don't see
this directly represented in the text form, and for the binary
emission this is depending on a function level subtarget feature to
emit a global flag.
llvm-svn: 357558
Since this can be set with s_setreg*, it should not be a subtarget
property. Set a default based on the calling convention, and Introduce
a new amdgpu-dx10-clamp attribute to override this if desired.
Also introduce a new amdgpu-ieee attribute to match.
The values need to match to allow inlining. I think it is OK for the
caller's dx10-clamp attribute to override the callee, but there
doesn't appear to be the infrastructure to do this currently without
definining the attribute in the generic Attributes.td.
Eventually the calling convention lowering will need to insert a mode
switch somewhere for these.
llvm-svn: 357302
Some DAG mutations can only be applied to `ScheduleDAGMI`, and have to
internally cast a `ScheduleDAGInstrs` to `ScheduleDAGMI`.
There is nothing actually specific to `ScheduleDAGMI` in `Topo`.
llvm-svn: 357239
There are a few different issues, mostly stemming from using
generation based checks for anything instead of subtarget
features. Stop adding flat-address-space as a feature for HSA, as it
should only be a device property. This was incorrectly allowing flat
instructions to select for SI.
Increase the default generation for HSA to avoid the encoding error
when emitting objects. This has some other side effects from various
checks which probably should be separate subtarget features (in the
cost model and for dealing with the DS offset folding issue).
Partial fix for bug 41070. It should probably be an error to try using
amdhsa without flat support.
llvm-svn: 356347
Inline compatability is determined from the individual feature
bits. These are just sets of the separate features, but will always be
treated as incompatible unless they are specifically ignored.
Defining the ISA version number here in tablegen would be nice, but it
turns out this wasn't actually used.
llvm-svn: 353558
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
TFE and LWE support requires extra result registers that are written in the
event of a failure in order to detect that failure case.
The specific use-case that initiated these changes is sparse texture support.
This means that if image intrinsics are used with either option turned on, the
programmer must ensure that the return type can contain all of the expected
results. This can result in redundant registers since the vector size must be a
power-of-2.
This change takes roughly 6 parts:
1. Modify the instruction defs in tablegen to add new instruction variants that
can accomodate the extra return values.
2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE
(where the bulk of the work for these instruction types is now done)
3. Extra verification code to catch cases where intrinsics have been used but
insufficient return registers are used.
4. Modification to the adjustWritemask optimisation to account for TFE/LWE being
enabled (requires extra registers to be maintained for error return value).
5. An extra pass to zero initialize the error value return - this is because if
the error does not occur, the register is not written and thus must be zeroed
before use. Also added a new (on by default) option to ensure ALL return values
are zero-initialized that is required for sparse texture support.
6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO
for this to re-enable and handle correctly).
There's an additional fix now to avoid a dmask=0
For an image intrinsic with tfe where all result channels except tfe
were unused, I was getting an image instruction with dmask=0 and only a
single vgpr result for tfe. That is incorrect because the hardware
assumes there is at least one vgpr result, plus the one for tfe.
Fixed by forcing dmask to 1, which gives the desired two vgpr result
with tfe in the second one.
The TFE or LWE result is returned from the intrinsics using an aggregate
type. Look in the test code provided to see how this works, but in essence IR
code to invoke the intrinsic looks as follows:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15,
i32 %s, <8 x i32> %rsrc, i32 1, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
This re-submit of the change also includes a slight modification in
SIISelLowering.cpp to work-around a compiler bug for the powerpc_le
platform that caused a buildbot failure on a previous submission.
Differential revision: https://reviews.llvm.org/D48826
Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda
Work around for ppcle compiler bug
Change-Id: Ie284cf24b2271215be1b9dc95b485fd15000e32b
llvm-svn: 351054
Also revert fix r347876
One of the buildbots was reporting a failure in some relevant tests that I can't
repro or explain at present, so reverting until I can isolate.
llvm-svn: 347911
TFE and LWE support requires extra result registers that are written in the
event of a failure in order to detect that failure case.
The specific use-case that initiated these changes is sparse texture support.
This means that if image intrinsics are used with either option turned on, the
programmer must ensure that the return type can contain all of the expected
results. This can result in redundant registers since the vector size must be a
power-of-2.
This change takes roughly 6 parts:
1. Modify the instruction defs in tablegen to add new instruction variants that
can accomodate the extra return values.
2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE
(where the bulk of the work for these instruction types is now done)
3. Extra verification code to catch cases where intrinsics have been used but
insufficient return registers are used.
4. Modification to the adjustWritemask optimisation to account for TFE/LWE being
enabled (requires extra registers to be maintained for error return value).
5. An extra pass to zero initialize the error value return - this is because if
the error does not occur, the register is not written and thus must be zeroed
before use. Also added a new (on by default) option to ensure ALL return values
are zero-initialized that is required for sparse texture support.
6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO
for this to re-enable and handle correctly).
There's an additional fix now to avoid a dmask=0
For an image intrinsic with tfe where all result channels except tfe
were unused, I was getting an image instruction with dmask=0 and only a
single vgpr result for tfe. That is incorrect because the hardware
assumes there is at least one vgpr result, plus the one for tfe.
Fixed by forcing dmask to 1, which gives the desired two vgpr result
with tfe in the second one.
The TFE or LWE result is returned from the intrinsics using an aggregate
type. Look in the test code provided to see how this works, but in essence IR
code to invoke the intrinsic looks as follows:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15,
i32 %s, <8 x i32> %rsrc, i32 1, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
Differential revision: https://reviews.llvm.org/D48826
Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda
llvm-svn: 347871
This feature is only relevant to shaders, and is no longer used. When disabled,
lowering of reserved registers for shaders causes a compiler crash.
Remove the feature and add a test for compilation of shaders at OptNone.
Differential Revision: https://reviews.llvm.org/D53829
llvm-svn: 345763
Summary:
GFX9 and above support sin/cos instructions with a greater range and thus don't
require a fract instruction prior to invocation.
Added a subtarget feature to reflect this and added code to take advantage of
expanded range on GFX9+
Also updated the tests to check correct behaviour
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D51933
Change-Id: I1c1f1d3726a5ae32116646ca5cfa1ab4ef69e5b0
llvm-svn: 342222
Move isa version determination into TargetParser.
Also switch away from target features to CPU string when
determining isa version. This fixes an issue when we
output wrong isa version in the object code when features
of a particular CPU are altered (i.e. gfx902 w/o xnack
used to result in gfx900).
llvm-svn: 342069
into TargetParser.
Also switch away from target features to CPU string when
determining isa version. This fixes an issue when we
output wrong isa version in the object code when features
of a particular CPU are altered (i.e. gfx902 w/o xnack
used to result in gfx900).
Differential Revision: https://reviews.llvm.org/D51890
llvm-svn: 341982
This is necessary to add a VI specific builtin,
__builtin_amdgcn_s_dcache_wb. We already have an
overly specific feature for one of these builtins,
for s_memrealtime. I'm not sure whether it's better
to add more of those, or to get rid of that and merge
it with vi-insts.
Alternatively, maybe this logically goes with scalar-stores?
llvm-svn: 339104
This reverts commit r337021.
WARNING: MemorySanitizer: use-of-uninitialized-value
#0 0x1415cd65 in void write_signed<long>(llvm::raw_ostream&, long, unsigned long, llvm::IntegerStyle) /code/llvm-project/llvm/lib/Support/NativeFormatting.cpp:95:7
#1 0x1415c900 in llvm::write_integer(llvm::raw_ostream&, long, unsigned long, llvm::IntegerStyle) /code/llvm-project/llvm/lib/Support/NativeFormatting.cpp:121:3
#2 0x1472357f in llvm::raw_ostream::operator<<(long) /code/llvm-project/llvm/lib/Support/raw_ostream.cpp:117:3
#3 0x13bb9d4 in llvm::raw_ostream::operator<<(int) /code/llvm-project/llvm/include/llvm/Support/raw_ostream.h:210:18
#4 0x3c2bc18 in void printField<unsigned int, &(amd_kernel_code_s::amd_kernel_code_version_major)>(llvm::StringRef, amd_kernel_code_s const&, llvm::raw_ostream&) /code/llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDKernelCodeTUtils.cpp:78:23
#5 0x3c250ba in llvm::printAmdKernelCodeField(amd_kernel_code_s const&, int, llvm::raw_ostream&) /code/llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDKernelCodeTUtils.cpp:104:5
#6 0x3c27ca3 in llvm::dumpAmdKernelCode(amd_kernel_code_s const*, llvm::raw_ostream&, char const*) /code/llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDKernelCodeTUtils.cpp:113:5
#7 0x3a46e6c in llvm::AMDGPUTargetAsmStreamer::EmitAMDKernelCodeT(amd_kernel_code_s const&) /code/llvm-project/llvm/lib/Target/AMDGPU/MCTargetDesc/AMDGPUTargetStreamer.cpp:161:3
#8 0xd371e4 in llvm::AMDGPUAsmPrinter::EmitFunctionBodyStart() /code/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAsmPrinter.cpp:204:26
[...]
Uninitialized value was created by an allocation of 'KernelCode' in the stack frame of function '_ZN4llvm16AMDGPUAsmPrinter21EmitFunctionBodyStartEv'
#0 0xd36650 in llvm::AMDGPUAsmPrinter::EmitFunctionBodyStart() /code/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAsmPrinter.cpp:192
llvm-svn: 337079
This was completely broken if there was ever a struct argument, as
this information is thrown away during the argument analysis.
The offsets as passed in to LowerFormalArguments are not useful,
as they partially depend on the legalized result register type,
and they don't consider the alignment in the first place.
Ignore the Ins array, and instead figure out from the raw IR type
what we need to do. This seems to fix the padding computation
if the DAG lowering is forced (and stops breaking arguments
following padded arguments if the arguments were only partially
lowered in the IR)
llvm-svn: 337021
SITargetLowering queries SIInstrInfo in its constructor, so SIInstrInfo
must be initialized first. This fixes msan buildbot failures and was
introduced by r336851.
llvm-svn: 336861
Summary:
This is a follow-up to r335942.
- Merge SISubtarget into AMDGPUSubtarget and rename to GCNSubtarget
- Rename AMDGPUCommonSubtarget to AMDGPUSubtarget
- Merge R600Subtarget::Generation and GCNSubtarget::Generation into
AMDGPUSubtarget::Generation.
Reviewers: arsenm, jvesely
Subscribers: kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D49037
llvm-svn: 336851
This was introducing unnecessary padding after the explicit
arguments, depending on the alignment of the total struct type.
Also has the side effect of avoiding creating an extra GEP for
the offset from the base kernel argument to the explicit kernel
argument offset.
llvm-svn: 335999
Summary:
We now have two sets of generated TableGen files, one for R600 and one
for GCN, so each sub-target now has its own tables of instructions,
registers, ISel patterns, etc. This should help reduce compile time
since each sub-target now only has to consider information that
is specific to itself. This will also help prevent the R600
sub-target from slowing down new features for GCN, like disassembler
support, GlobalISel, etc.
Reviewers: arsenm, nhaehnle, jvesely
Reviewed By: arsenm
Subscribers: MatzeB, kzhuravl, wdng, mgorny, yaxunl, dstuttard, tpr, t-tye, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D46365
llvm-svn: 335942
AFAIK the driver's allocation will actually have to round this
up anyway. It is useful to track the rounded up size, so that
the end of the kernel segment is known to be dereferencable so
a wider s_load_dword can be used for a short argument at the end
of the segment.
llvm-svn: 333456
Summary:
MCTargetDesc/AMDGPUMCTargetDesc.h contains enums for all the instuction
and register defintions, which are huge so we only want to include
them where needed.
This will also make it easier if we want to split the R600 and GCN
definitions into separate tablegenerated files.
I was unable to remove AMDGPUMCTargetDesc.h from SIMachineFunctionInfo.h
because it uses some enums from the header to initialize default values
for the SIMachineFunction class, so I ended up having to remove includes of
SIMachineFunctionInfo.h from headers too.
Reviewers: arsenm, nhaehnle
Reviewed By: nhaehnle
Subscribers: MatzeB, kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D46272
llvm-svn: 332930
- Predicate D16 patterns on this new feature
- Added this new feature to gfx900/2/4
Differential Revision: https://reviews.llvm.org/D46366
llvm-svn: 331551
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
Author: Samuel Pitoiset
ds_read_b128 and ds_write_b128 have been recently enabled
under the amdgpu-ds128 option because the performance benefit
is unclear.
Though, using 128-bit loads/stores for the local address space
appears to introduce regressions in tessellation shaders. Not
sure what is broken, but as ds_read_b128/ds_write_b128 are not
enabled by default, just introduce a global option and enable
128-bit only if requested (until it's fixed/used correctly).
v2: - fix regressions in merge-stores.ll and multiple_tails.ll
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=105464
llvm-svn: 329764
Author: Samuel Pitoiset
ds_read_b128 and ds_write_b128 have been recently enabled
under the amdgpu-ds128 option because the performance benefit
is unclear.
Though, using 128-bit loads/stores for the local address space
appears to introduce regressions in tessellation shaders. Not
sure what is broken, but as ds_read_b128/ds_write_b128 are not
enabled by default, just introduce a global option and enable
128-bit only if requested (until it's fixed/used correctly).
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=105464
llvm-svn: 329591