Make specializations of `DataflowAnalysis` extendable with domain-specific
logic for comparing distinct values when comparing environments.
This includes a breaking change to the `runDataflowAnalysis` interface
as the return type is now `llvm::Expected<...>`.
This is part of the implementation of the dataflow analysis framework.
See "[RFC] A dataflow analysis framework for Clang AST" on cfe-dev.
Reviewed-by: ymandel, xazax.hun
Differential Revision: https://reviews.llvm.org/D118596
This patch introduces a linker wrapper tool that allows us to preprocess
files before they are sent to the linker. This adds a dummy action and
job to the driver stage that builds the linker command as usual and then
replaces the command line with the wrapper tool.
Depends on D116543
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D116544
This patch adds support for a flag `-fembed-offload-binary` to embed a
file as an ELF section in the output by placing it in a global variable.
This can be used to bundle offloading files with the host binary so it
can be accessed by the linker. The section is named using the
`-fembed-offload-section` option.
Depends on D116541
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D116542
This patch introduces the `-fopenmp-new-driver` option which instructs
the compiler to use a new driver scheme for producing offloading code.
In this scheme we create a complete offloading object file and then pass
it as input to the host compilation phase. This will allow us to embed
the object code in the backend phase.
This is the start of a series of commits to rework the OpenMP offloading driver
pipeline. The goal of this is to simplify the steps required for creating an
offloading program. This patch changes the driver's configuration to simply pass
the device file back to the host as an input so it can be embedded as an LLVM IR
global during the backend, then simply passes that object file to the linker.
This driver implementation will currently create the following phases,
```
$ clang input.c -fopenmp -fopenmp-targets=nvptx64 -fopenmp-new-driver -ccc-print-phases
+- 0: input, "input.c", c, (host-openmp)
+- 1: preprocessor, {0}, cpp-output, (host-openmp)
+- 2: compiler, {1}, ir, (host-openmp)
| | +- 3: input, "input.c", c, (device-openmp)
| | +- 4: preprocessor, {3}, cpp-output, (device-openmp)
| |- 5: compiler, {4}, ir, (device-openmp)
| +- 6: offload, "host-openmp (x86_64-unknown-linux-gnu)" {2}, "device-openmp (nvptx64)" {5}, ir
| +- 7: backend, {6}, assembler, (device-openmp)
|- 8: assembler, {7}, object, (device-openmp)
+- 9: offload, "host-openmp (x86_64-unknown-linux-gnu)" {2}, "device-openmp (nvptx64)" {8}, ir
+- 10: backend, {9}, assembler, (host-openmp)
+- 11: assembler, {10}, object, (host-openmp)
12: clang-linker-wrapper, {11}, image, (host-openmp)
```
Which will map to the following bindings
```
# "x86_64-unknown-linux-gnu" - "clang", inputs: ["input.c"], output: "/tmp/input-bae62e.bc"
# "nvptx64" - "clang", inputs: ["input.c", "/tmp/input-bae62e.bc"], output: "/tmp/input-76784e.s"
# "nvptx64" - "NVPTX::Assembler", inputs: ["/tmp/input-76784e.s"], output: "/tmp/input-8f29db.o"
# "x86_64-unknown-linux-gnu" - "clang", inputs: ["/tmp/input-bae62e.bc", "/tmp/input-8f29db.o"], output: "/tmp/input-545450.o"
# "x86_64-unknown-linux-gnu" - "Offload::Linker", inputs: ["/tmp/input-545450.o"], output: "a.out"
```
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D116541
Openmp executables need to find libomp and libomptarget at runtime.
This currently requires LD_LIBRARY_PATH or the user to specify rpath. Change
that to set the expected location of the openmp libraries in the install tree.
Whether rpath means rpath or runpath is system dependent. The attached test
shows that the Wl,--disable-new-dtags control interacts correctly with this feature.
The implicit rpath field is appended to any user specified ones which is ideal.
Reviewed By: jhuber6
Differential Revision: https://reviews.llvm.org/D118493
Openmp executables need to find libomp and libomptarget at runtime.
This currently requires LD_LIBRARY_PATH or the user to specify rpath. Change
that to set the expected location of the openmp libraries in the install tree.
Whether rpath means rpath or runpath is system dependent. The attached test
shows that the Wl,--disable-new-dtags control interacts correctly with this feature.
The implicit rpath field is appended to any user specified ones which is ideal.
Reviewed By: jhuber6
Differential Revision: https://reviews.llvm.org/D118493
Both IDFCalculatorBase and its accompanying DominatorTreeBase only supports pointer nodes. The template argument is the block type itself and any uses of GraphTraits is therefore done via a pointer to the node type.
However, the ChildrenGetterTy type of IDFCalculatorBase has a use on just the node type instead of a pointer to the node type. Various parts of the monorepo has worked around this issue by providing specializations of GraphTraits for the node type directly, or not been affected by using specializations instead of the generic case. These are unnecessary however and instead the generic code should be fixed instead.
An example from within Tree is eg. A use of IDFCalculatorBase in InstrRefBasedImpl.cpp. It basically instantiates a IDFCalculatorBase<MachineBasicBlock, false> but due to the bug above then goes on to specialize GraphTraits<MachineBasicBlock> although GraphTraits<MachineBasicBlock*> exists (and should be used instead).
Similar dead code exists in clang which defines redundant GraphTraits to work around this bug.
This patch fixes both the original issue and removes the dead code that was used to work around the issue.
Differential Revision: https://reviews.llvm.org/D118386
This patch builds on the change in D117634 that expanded the short
triples when passed in by the user. This patch adds the same
functionality for the `-Xopenmp-target=` flag. Previously it was
unintuitive that passing `-fopenmp-targets=nvptx64
-Xopenmp-target=nvptx64 <arg>` would not forward the arg because the
triples did not match on account of `nvptx64` being expanded to
`nvptx64-nvidia-cuda`.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D118495
to give users a final warning that they need to migrate away. They could still
use -flegacy-pass-manager for Clang 14.0.0, but the functionality may not work
for 15.0.0.
-fexperimental-new-pass-manager is a no-op for default builds, so not urgent to
be removed for 14.0.0.
clang/test/Frontend/optimization-remark-with-hotness.c is removed because its
new PM replacement optimization-remark-with-hotness-new-pm.c exists.
Reviewed By: aeubanks, nikic
Differential Revision: https://reviews.llvm.org/D118313
The --offload option was added in D110622 to "override the default
device target". When it landed it supported only HIP. This patch
extends that option to support SPIR-V targets for CUDA.
Reviewed By: tra
Differential Revision: https://reviews.llvm.org/D117137
Currently clang treats host var address as constant in device compilation,
which causes const vars initialized with host var address promoted to
device variables incorrectly and results in undefined symbols.
This patch fixes that.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D118153
Fixes: SWDEV-309881
Change-Id: I0a69357063c6f8539ef259c96c250d04615f4473
Part of the _BitInt feature in C2x
(http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2763.pdf) is a new
macro in limits.h named BITINT_MAXWIDTH that can be used to determine
the maximum width of a bit-precise integer type. This macro must expand
to a value that is at least as large as ULLONG_WIDTH.
This adds an implementation-defined macro named __BITINT_MAXWIDTH__ to
specify that value, which is used by limits.h for the standard macro.
This also limits the maximum bit width to 128 bits because backends do
not currently support all mathematical operations (such as division) on
wider types yet. This maximum is expected to be increased in the future.
This matches GCC: https://godbolt.org/z/sM5q95PGY
I realize this is an API break for clang+clang - so I'm totally open to
discussing how we should deal with that. If Apple wants to keep the
Clang layout indefinitely, if we want to put a flag on this so non-Apple
folks can opt out of this fix/new behavior.
Differential Revision: https://reviews.llvm.org/D117616
Branch protection in M-class is supported by
- Armv8.1-M.Main
- Armv8-M.Main
- Armv7-M
Attempting to enable this for other architectures, either by
command-line (e.g -mbranch-protection=bti) or by target attribute
in source code (e.g. __attribute__((target("branch-protection=..."))) )
will generate a warning.
In both cases function attributes related to branch protection will not
be emitted. Regardless of the warning, module level attributes related to
branch protection will be emitted when it is enabled via the command-line.
The following people also contributed to this patch:
- Victor Campos
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D115501
* After 3452a0d8c1 (2020-07), $prefix/$triple-$file is not searched.
* Unlike GCC, -B is not used for include paths. Seems nobody needs this behavior because there are more targeted options like --sysroot/-isystem
Since it's introduction, the qrdmlah has been represented as a qrdmulh
and a sadd_sat. This doesn't produce the same result for all input
values though. This patch fixes that by introducing a qrdmlah (and
qrdmlsh) intrinsic specifically for the vqrdmlah and sqrdmlah
instructions. The old test cases will now produce a qrdmulh and sqadd,
as expected.
Fixes#53120 and #50905 and #51761.
Differential Revision: https://reviews.llvm.org/D117592
This feature requires support of __opencl_c_generic_address_space and
__opencl_c_program_scope_global_variables so diagnostics for that is provided as well.
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D115640
Currently we are trying to implement the semantics of C++ Modules. A big
challenge would be the ODR checking. Previously we did this in
ASTReader, it would handle the cases like:
```
module;
export module a_module;
import another_module; // check the ODR consistency here
```
or
```
export module m;
import a_module;
import another_module; // check the ODR consistency here
```
However, it wouldn't handle the case:
```
import another_module; // When we check ODR here, everything looks fine.
```
In the case, the read process is ended. But we need to check the ODR
still. To reuse the facility we do in ASTReader, this patch moves the
corresponding codes into ASTContext. This should be good since there
were facilities like `hasSameTemplateName` and `hasSameType`.
Although the patch is a little bit big, all of the change should be
trivial.
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D118223
GCC added -gz=zlib-gnu in 2014 for -gz meaning change (.zdebug =>
SHF_COMPRESSED) and the legacy zlib-gnu hasn't gain adoption.
According to Debian Code Search (`gz=zlib-gnu`), no project uses -gz=zlib-gnu
(valgrind has a configure to use -gz=zlib). Any possible -gz=zlib-gnu user can
switch to -gz smoothly (supported by integrated assemblers for many years;
binutils 2.26).
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D117744
These built-in functions build the (sophisticated) model of the code's
memory. This model isn't used by all analyses, so we provide for disabling it to
avoid incurring the costs associated with its construction.
Differential Revision: https://reviews.llvm.org/D118178
This method introduces new CMake variable
PPC_LINUX_DEFAULT_IEEELONGDOUBLE (false by default) to enable fp128 as
default long double format.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D118110
This reverts commit ef82063207.
- It conflicts with the existing llvm::size in STLExtras, which will now
never be called.
- Calling it without llvm:: breaks C++17 compat
This patch replaces the exact include count of each file in `HeaderFileInfo` with a set of included files in `Preprocessor`.
The number of includes isn't a property of a header file but rather a preprocessor state. The exact number of includes is not used anywhere except statistic tracking.
Reviewed By: vsapsai
Differential Revision: https://reviews.llvm.org/D114095
Underscore-uglified identifiers are used in standard library implementations to
guard against collisions with macros, and they hurt readability considerably.
(Consider `push_back(Tp_ &&__value)` vs `push_back(Tp value)`.
When we're describing an interface, the exact names of parameters are not
critical so we can drop these prefixes.
This patch adds a new PrintingPolicy flag that can applies this stripping
when recursively printing pieces of AST.
We set it in code completion/signature help, and in clangd's hover display.
All three features also do a bit of manual poking at names, so fix up those too.
Fixes https://github.com/clangd/clangd/issues/736
Differential Revision: https://reviews.llvm.org/D116387
Make specializations of `DataflowAnalysis` extendable with domain-specific
logic for merging distinct values when joining environments. This could be
a strict lattice join or a more general widening operation.
This is part of the implementation of the dataflow analysis framework.
See "[RFC] A dataflow analysis framework for Clang AST" on cfe-dev.
Reviewed-by: xazax.hun
Differential Revision: https://reviews.llvm.org/D118038
The goal is support tail and mask policy in RVV builtins.
We focus on IR part first.
If the passthru operand is undef, we use tail agnostic, otherwise
use tail undisturbed.
Co-Authored-by: Hsiangkai Wang <Hsiangkai@gmail.com>
Reviewers: craig.topper, frasercrmck
Differential Revision: https://reviews.llvm.org/D117647
Special classes such as accessor, sampler, and stream need additional
implementation when they are passed from host to device.
This patch is adding a new attribute “sycl_special_class” used to mark
SYCL classes/struct that need the additional compiler handling.
This patch adds a `buildAccess` function, which constructs a string with the
proper operator to use based on the expression's form and type. It also adds two
predicates related to smart pointers, which are needed by `buildAccess` but are
also of general value.
We deprecate `buildDot` and `buildArrow` in favor of the more general
`buildAccess`. These will be removed in a future patch.
Differential Revision: https://reviews.llvm.org/D116377
According to v-spec 1.0, `vmulh`, `vmulhu`, `vmulhsu` and `vsmul` are
NOT supported for EEW=64 in Zve64*.
This patch tries to guard it correctly.
Authored by: Craig Topper <craig.topper@sifive.com> @craig.topper
Co-Authored by: Eop Chen <eop.chen@sifive.com> @eopXD
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D117913
This is part of the implementation of the dataflow analysis framework.
See "[RFC] A dataflow analysis framework for Clang AST" on cfe-dev.
Reviewed-by: xazax.hun
Differential Revision: https://reviews.llvm.org/D118119
The field 'RequiredExtensions' is used to specify the constraint for rvv builtin, and it contains something which is not a sub-extension or extension such as 'RV64'. So the word 'extension' is not accurate now, 'feature' seems better.
Differential Revision: https://reviews.llvm.org/D118015
Add missing const to `getVersion` function of `ObjCAvailabilityCheckExpr` class.
This feels like a bug on the original change D22171. We cannot really call this function from a const object pointer because the function is not marked as const.
This diff adds the missing const specifier to fix the issue.
Reviewed By: manmanren
Differential Revision: https://reviews.llvm.org/D112119
Only using that change in StringRef already decreases the number of
preoprocessed lines from 7837621 to 7776151 for LLVMSupport
Perhaps more interestingly, it shows that many files were relying on the
inclusion of StringRef.h to have the declaration from STLExtras.h. This
patch tries hard to patch relevant part of llvm-project impacted by this
hidden dependency removal.
Potential impact:
- "llvm/ADT/StringRef.h" no longer includes <memory>,
"llvm/ADT/Optional.h" nor "llvm/ADT/STLExtras.h"
Related Discourse thread:
https://llvm.discourse.group/t/include-what-you-use-include-cleanup/5831
None of these have any reordering issues, and they still emit the same reduction intrinsics without any change in the existing test coverage:
llvm-project\clang\test\CodeGen\X86\avx512-reduceIntrin.c
llvm-project\clang\test\CodeGen\X86\avx512-reduceMinMaxIntrin.c
Differential Revision: https://reviews.llvm.org/D117881
D111985 added the generic `__builtin_elementwise_max` and `__builtin_elementwise_min` intrinsics with the same integer behaviour as the SSE/AVX instructions
This patch removes the `__builtin_ia32_pmax/min` intrinsics and just uses `__builtin_elementwise_max/min` - the existing tests see no changes:
```
__m256i test_mm256_max_epu32(__m256i a, __m256i b) {
// CHECK-LABEL: test_mm256_max_epu32
// CHECK: call <8 x i32> @llvm.umax.v8i32(<8 x i32> %{{.*}}, <8 x i32> %{{.*}})
return _mm256_max_epu32(a, b);
}
```
This requires us to add a `__v64qs` explicitly signed char vector type (we already have `__v16qs` and `__v32qs`).
Sibling patch to D117791
Differential Revision: https://reviews.llvm.org/D117798
D111986 added the generic `__builtin_elementwise_abs()` intrinsic with the same integer absolute behaviour as the SSE/AVX instructions (abs(INT_MIN) == INT_MIN)
This patch removes the `__builtin_ia32_pabs*` intrinsics and just uses `__builtin_elementwise_abs` - the existing tests see no changes:
```
__m256i test_mm256_abs_epi8(__m256i a) {
// CHECK-LABEL: test_mm256_abs_epi8
// CHECK: [[ABS:%.*]] = call <32 x i8> @llvm.abs.v32i8(<32 x i8> %{{.*}}, i1 false)
return _mm256_abs_epi8(a);
}
```
This requires us to add a `__v64qs` explicitly signed char vector type (we already have `__v16qs` and `__v32qs`).
Differential Revision: https://reviews.llvm.org/D117791
GCC 12 should have proper support for IEEE-754 compliant 128-bit
floating point in libstdc++. So warning is needed when linking against
older libstdc++ versions or LLVM libc++.
Glibc starts supporting float128 in both header and libraries since
2.32.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D112906
According to the spec, there are some difference between V and Zve64d. For example, the vmulh integer multiply variants that return the high word of the product (vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx) are not included for EEW=64 in Zve64*, but V extension does support these instructions. So we should decouple Zve* extensions and the V extension.
Differential Revision: https://reviews.llvm.org/D117854