Commit Graph

4 Commits

Author SHA1 Message Date
Oliver Stannard 50a74393c2 [ARM] Fix registers clobbered by SjLj EH on soft-float targets
Currently, the Int_eh_sjlj_dispatchsetup intrinsic is marked as
clobbering all registers, including floating-point registers that may
not be present on the target. This is technically true, as we could get
linked against code that does use the FP registers, but that will not
actually work, as the soft-float code cannot save and restore the FP
registers. SjLj exception handling can only work correctly if either all
or none of the code is built for a target with FP registers. Therefore,
we can assume that, when Int_eh_sjlj_dispatchsetup is compiled for a
soft-float target, it is only going to be linked against other
soft-float code, and so only clobbers the general-purpose registers.
This allows us to check that no non-savable registers are clobbered when
generating the prologue/epilogue.

Differential Revision: https://reviews.llvm.org/D25180

llvm-svn: 283866
2016-10-11 10:06:59 +00:00
David Majnemer 7fddeccb8b Move the personality function from LandingPadInst to Function
The personality routine currently lives in the LandingPadInst.

This isn't desirable because:
- All LandingPadInsts in the same function must have the same
  personality routine.  This means that each LandingPadInst beyond the
  first has an operand which produces no additional information.

- There is ongoing work to introduce EH IR constructs other than
  LandingPadInst.  Moving the personality routine off of any one
  particular Instruction and onto the parent function seems a lot better
  than have N different places a personality function can sneak onto an
  exceptional function.

Differential Revision: http://reviews.llvm.org/D10429

llvm-svn: 239940
2015-06-17 20:52:32 +00:00
Andrew Trick 8485257d6d Allocate local registers in order for optimal coloring.
Also avoid locals evicting locals just because they want a cheaper register.

Problem: MI Sched knows exactly how many registers we have and assumes
they can be colored. In cases where we have large blocks, usually from
unrolled loops, greedy coloring fails. This is a source of
"regressions" from the MI Scheduler on x86. I noticed this issue on
x86 where we have long chains of two-address defs in the same live
range. It's easy to see this in matrix multiplication benchmarks like
IRSmk and even the unit test misched-matmul.ll.

A fundamental difference between the LLVM register allocator and
conventional graph coloring is that in our model a live range can't
discover its neighbors, it can only verify its neighbors. That's why
we initially went for greedy coloring and added eviction to deal with
the hard cases. However, for singly defined and two-address live
ranges, we can optimally color without visiting neighbors simply by
processing the live ranges in instruction order.

Other beneficial side effects:

It is much easier to understand and debug regalloc for large blocks
when the live ranges are allocated in order. Yes, global allocation is
still very confusing, but it's nice to be able to comprehend what
happened locally.

Heuristics could be added to bias register assignment based on
instruction locality (think late register pairing, banks...).

Intuituvely this will make some test cases that are on the threshold
of register pressure more stable.

llvm-svn: 187139
2013-07-25 18:35:14 +00:00
Chad Rosier 9660343b42 Add support for using non-pic code for arm and thumb1 when emitting the sjlj
dispatch code.  As far as I can tell the thumb2 code is behaving as expected.
I was able to compile and run the associated test case for both arm and thumb1.
rdar://13066352

llvm-svn: 176363
2013-03-01 18:30:38 +00:00