Also fixed a bug where the Objective-C runtime
would not properly report that it found a class if
(a) it had to build the ObjCInterfaceDecl for the
class and (b) logging was enabled.
<rdar://problem/12641180>
llvm-svn: 167516
Unnamed bitfields cause struct layout problems
Synthesize unnamed bitfields when required. Most compilers don't mention unnamed bitfields in the DWARF, so we need to create them to keep clang happy with the types we create from the DWARF. We currently can't do this for ObjC since the DW_AT_bit_offset value for any direct ivars of ObjC classes as the values for these attributes are bogus. A bug has been filed on Clang to fix this, and another bug has been filed on LLDB to make sure we fix the DWARF parser once the clang fix is in by looking the the DW_AT_producer in the compile unit attributes and finding the compiler version and only enabling it for newer versions of clang.
llvm-svn: 167424
The operator== method is a synonym for IsExactMatch().
The essential difference between these two is that IsCompatibleMatch()
will say that armv7 and armv7s are compatible and return true.
IsExactMatch() will say that armv7 and armv7s are not a match.
An armv7s cpu can run either generic armv7 binaries or armv7s binaries
(the latter being tuned for it). When we're picking the slice of a
universal Mach-O file to load in an armv7s Target, we need to be able to
first look for an exact cpu subtype match (armv7s == armv7s) and failing
that, looking for a slice with a compatible architecture.
Update ObjectContainerUniversalMachO::GetObjectFile to prefer an exact
match of the cpu type, falling back to a compatible match if necessary.
<rdar://problem/12593515>
llvm-svn: 167365
LLDB now provides base class offsets (virtual and non virtual) to Clang's record layout. We previously were told this wasn't necessary, but it is when pragma pack gets involved.
llvm-svn: 167262
RegisterContextKDP_i386 was not correctly writing registers due to missing "virtual" keywords. Added the virtual keywords and made the functions pure virtual to ensure subclasses can't get away without implementing these functions.
llvm-svn: 167066
I tracked down a leak that could happen when detaching from a process where the lldb_private::Process objects would stay around forever. This was caused by a eStateDetached event that was queued up on the lldb_private::Process private state thread listener. Since process events contain shared pointers to the process, this is dangerous if they don't get consume or cleared as having the lldb_private::Process class contain a collection of things that have a shared pointer to yourself is obviously bad.
To fix this I modified the Process::Finalize() function to clear this list. The actual thing that was holding onto the ModuleSP and thus the static archive, was a stack frame. Since the process wasn't going away, it still had thread objects and they still had frames. I modified the Thread::Destroy() to clear the stack frames to ensure this further doesn't happen.
llvm-svn: 166964
so it could hold this information, and then used it to look up unfound names in the object pointer
if it exists. This gets "frame var" to work for unqualified references to ivars captured in blocks.
But the expression parser is ignoring this information still.
llvm-svn: 166860
- Only read the statically-defined isa table in the
shared cache once. Only the dynamically-constructed
isa table can change.
- Ignore the statically-defined isa table if its
version isn't what we expect.
llvm-svn: 166856
Full UnwindPlan is trying to do an impossible unwind; in that case
invalidate the Full UnwindPlan and replace it with the architecture
default unwind plan.
This is a scenario that happens occasionally with arm unwinds in
particular; the instruction analysis based full unwindplan can
mis-parse the functions and the stack walk stops prematurely. Now
we can do a simpleminded frame-chain walk to find the caller frame
and continue the unwind. It's not ideal but given the complicated
nature of analyzing the arm functions, and the lack of eh_frame
information on iOS, it is a distinct improvement and fixes some
long-standing problems with the unwinder on that platform.
This is fixing <rdar://problem/12091421>. I may re-use this
invalidate feature in the future if I can identify other cases where
the full unwindplan's unwind information is clearly incorrect.
This checkin also includes some cleanup for the volatile register
definition in the arm ABI plugin for <rdar://problem/10652166>
although work remains to be done for that bug.
llvm-svn: 166757
the function's prologue instructions so we can re-instate that prologue
if we hit an early return mid-function. Add some additional heuristics
to differentiate between prologue and epilogue instruction sequences.
This fixes the specific problem of correctly unwinding through a function
which has an epilogue one instruction after the last prologue setup
instruction has completed.
<rdar://problem/12091139>
llvm-svn: 166465
- Fixed a crash when the executable module
couldn't be found.
- Fixed a problem that made it impossible
to attach to processes in the simulator
using the SBTarget::Attach.
llvm-svn: 166355
Added commands to the KDP plug-in that allow sending raw commands through the KDP protocol. You specify a command byte and a payload as ASCII hex bytes, and the packet is created with a valid header/sequenceID/length and sent. The command responds with a raw ASCII hex string that contains all bytes in the reply including the header.
An example of sending a read register packet for the GPR on x86_64:
(lldb) process plugin packet send --command 0x07 --payload 0100000004000000
llvm-svn: 166346
plugin
dynamic-loader
macosx-kernel
(bool) disable-kext-loading
To settings can be set using:
(lldb) settings set plugin.dynamic-loader.macosx-kernel.disable-kext-loading true
I currently only hooked up the DynamicLoader plug-ins, but the code is very easy to duplicate when and if we need settings for other plug-ins.
llvm-svn: 166294
1 by the expression parser. We now correctly
report that they are of size 0. (C++ structs
are mandated to have nonzero size, and Clang marks
them as being 1 byte in size.)
<rdar://problem/12380800>
llvm-svn: 166256
Added a new setting that allows a python OS plug-in to detect threads and provide registers for memory threads. To enable this you set the setting:
settings set target.process.python-os-plugin-path lldb/examples/python/operating_system.py
Then run your program and see the extra threads.
llvm-svn: 166244
<rdar://problem/12068650>
More fixes to how we handle paths that are used to create a target.
This modification centralizes the location where and how what the user specifies gets resolved. Prior to this fix, the TargetList::CreateTarget variants took a FileSpec object which meant everyone had the opportunity to resolve the path their own way. Now both CreateTarget variants take a "const char *use_exe_path" which allows the TargetList::CreateTarget to centralize where the resolving happens and "do the right thing".
llvm-svn: 166186
to handle an addition class of early-return instructions we find in arm code:
tail-call optimziation returns where we restore the register state from the
function entry and jump directly (not branch & link) to another function --
when that other function returns, it will return to our caller.
Previously this mid-function epilogue sequence was not being correctly detected.
We would not re-instate the prologue setup instructions for the rest of the function
so unwinds would break from that point until the end of the function.
<rdar://problem/12502597>
llvm-svn: 166081
This patch fixes an issue where if lldb fails to attach to a process (ie. invalid pid) on Linux, the process monitor thread gets stuck waiting for a signal from the attach thread, which never comes due to not being signaled. It also implements StopOpThread which is used for both attach/launch cases as I'm not aware of any special handling needed for the attach case. Also, propagate 'Error' from the Detach function instead of using a bool.
llvm-svn: 166055
must push something on the stack for a function call or not. In
x86, the stack pointer is decremented when the caller's pc is saved
on the stack. In arm, the stack pointer and frame pointer don't
necessarily have to change for a function call, although most
functions need to use some stack space during their execution.
Use this information in the RegisterContextLLDB to detect invalid
unwind scenarios more accurately.
<rdar://problem/12348574>
llvm-svn: 166005
I added the ability for a process plug-in to implement custom commands. All the lldb_private::Process plug-in has to do is override:
virtual CommandObject *
GetPluginCommandObject();
This object returned should be a multi-word command that vends LLDB commands. There is a sample implementation in ProcessGDBRemote that is hollowed out. It is intended to be used for sending a custom packet, though the body of the command execute function has yet to be implemented!
llvm-svn: 165861