This is a follow up of rL342874, which stopped fusing muls and adds into VMLAs
for performance reasons on the Cortex-M4 and Cortex-M33. This is a serie of 2
patches, that is trying to achieve the same for VFMA. The second column in the
table below shows what we were generating before rL342874, the third column
what changed with rL342874, and the last column what we want to achieve with
these 2 patches:
--------------------------------------------------------
| Opt | < rL342874 | >= rL342874 | |
|------------------------------------------------------|
|-O3 | vmla | vmul | vmul |
| | | vadd | vadd |
|------------------------------------------------------|
|-Ofast | vfma | vfma | vmul |
| | | | vadd |
|------------------------------------------------------|
|-Oz | vmla | vmla | vmla |
--------------------------------------------------------
This patch 1/2, is a cleanup of the spaghetti predicate logic on the different
VMLA and VFMA codegen rules, so that we can make the final functional change in
patch 2/2. This also fixes a typo in the regression test added in rL342874.
Differential revision: https://reviews.llvm.org/D53314
llvm-svn: 344671
A sequence of VMUL and VADD instructions always give the same or better
performance than a fused VMLA instruction on the Cortex-M4 and Cortex-M33.
Executing the VMUL and VADD back-to-back requires the same cycles, but
having separate instructions allows scheduling to avoid the hazard between
these 2 instructions.
Differential Revision: https://reviews.llvm.org/D52289
llvm-svn: 342874
This changes the tests that were targeting ARM EABI to explicitly specify the
environment rather than relying on the default. This breaks with the new
Windows on ARM support when running the tests on Windows where the default
environment is no longer EABI.
Take the opportunity to avoid a pointless redirect (helps when trying to debug
with providing a command line invocation which can be copy and pasted) and
removing a few greps in favour of FileCheck.
llvm-svn: 205541
This update was done with the following bash script:
find test/CodeGen -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc.*debug" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_-]*\):\( *\)$FUNC: *\$/;\1\2-LABEL:\3$FUNC:/g" $TEMP
done
sed -i '' "s/;\(.*\)-LABEL-LABEL:/;\1-LABEL:/" $TEMP
sed -i '' "s/;\(.*\)-NEXT-LABEL:/;\1-NEXT:/" $TEMP
sed -i '' "s/;\(.*\)-NOT-LABEL:/;\1-NOT:/" $TEMP
sed -i '' "s/;\(.*\)-DAG-LABEL:/;\1-DAG:/" $TEMP
mv $TEMP $NAME
fi
done
llvm-svn: 186280
Making use of VFP / NEON floating point multiply-accumulate / subtraction is
difficult on current ARM implementations for a few reasons.
1. Even though a single vmla has latency that is one cycle shorter than a pair
of vmul + vadd, a RAW hazard during the first (4? on Cortex-a8) can cause
additional pipeline stall. So it's frequently better to single codegen
vmul + vadd.
2. A vmla folowed by a vmul, vmadd, or vsub causes the second fp instruction to
stall for 4 cycles. We need to schedule them apart.
3. A vmla followed vmla is a special case. Obvious issuing back to back RAW
vmla + vmla is very bad. But this isn't ideal either:
vmul
vadd
vmla
Instead, we want to expand the second vmla:
vmla
vmul
vadd
Even with the 4 cycle vmul stall, the second sequence is still 2 cycles
faster.
Up to now, isel simply avoid codegen'ing fp vmla / vmls. This works well enough
but it isn't the optimial solution. This patch attempts to make it possible to
use vmla / vmls in cases where it is profitable.
A. Add missing isel predicates which cause vmla to be codegen'ed.
B. Make sure the fmul in (fadd (fmul)) has a single use. We don't want to
compute a fmul and a fmla.
C. Add additional isel checks for vmla, avoid cases where vmla is feeding into
fp instructions (except for the #3 exceptional case).
D. Add ARM hazard recognizer to model the vmla / vmls hazards.
E. Add a special pre-regalloc case to expand vmla / vmls when it's likely the
vmla / vmls will trigger one of the special hazards.
Enable these fp vmlx codegen changes for Cortex-A9.
llvm-svn: 129775
- For now, loads of [r, r] addressing mode is the same as the
[r, r lsl/lsr/asr #] variants. ARMBaseInstrInfo::getOperandLatency() should
identify the former case and reduce the output latency by 1.
- Also identify [r, r << 2] case. This special form of shifter addressing mode
is "free".
llvm-svn: 117519