-mcpu=# will support:
. generic: the default insn set
. v1: insn set version 1, the same as generic
. v2: insn set version 2, version 1 + additional jmp insns
. probe: the compiler will probe the underlying kernel to
decide proper version of insn set.
We did not not use -mcpu=native since llc/llvm will interpret -mcpu=native
as the underlying hardware architecture regardless of -march value.
Currently, only x86_64 supports -mcpu=probe. Other architecture will
silently revert to "generic".
Also added -mcpu=help to print available cpu parameters.
llvm will print out the information only if there are at least one
cpu and at least one feature. Add an unused dummy feature to
enable the printout.
Examples for usage:
$ llc -march=bpf -mcpu=v1 -filetype=asm t.ll
$ llc -march=bpf -mcpu=v2 -filetype=asm t.ll
$ llc -march=bpf -mcpu=generic -filetype=asm t.ll
$ llc -march=bpf -mcpu=probe -filetype=asm t.ll
$ llc -march=bpf -mcpu=v3 -filetype=asm t.ll
'v3' is not a recognized processor for this target (ignoring processor)
...
$ llc -march=bpf -mcpu=help -filetype=asm t.ll
Available CPUs for this target:
generic - Select the generic processor.
probe - Select the probe processor.
v1 - Select the v1 processor.
v2 - Select the v2 processor.
Available features for this target:
dummy - unused feature.
Use +feature to enable a feature, or -feature to disable it.
For example, llc -mcpu=mycpu -mattr=+feature1,-feature2
...
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 311522
Wrong assembly code is generated for a simple program with
clang. If clang only produces IR and llc is used
for IR lowering and optimization, correct assembly
code is generated.
The main reason is that clang feeds default Reloc::Static
to llvm and llc feeds no RelocMode to llvm, where
for llc case, BPF backend picks up Reloc::PIC_ mode.
This leads different IR lowering behavior and clang
permits global_addr+off folding while llc doesn't.
This patch introduces isOffsetFoldingLegal function into
BPF backend and the function always return false.
This will make clang and llc behave the same for
the lowering.
Bug https://bugs.llvm.org//show_bug.cgi?id=33183
has more detailed explanation.
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
llvm-svn: 304043
This is a mechanical change to make TargetLowering API take MachineInstr&
(instead of MachineInstr*), since the argument is expected to be a valid
MachineInstr. In one case, changed a parameter from MachineInstr* to
MachineBasicBlock::iterator, since it was used as an insertion point.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
llvm-svn: 274287
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
The exit-on-error flag on the many_args1.ll test is needed to avoid an
unreachable in BPFTargetLowering::LowerCall. We can also avoid it by ignoring
any superfluous arguments to the call (i.e. any arguments after the first 5).
Fixes PR27766.
Differential Revision: http://reviews.llvm.org/D20471
v2 of r270419
llvm-svn: 270440
This patch reverts r270419 because it broke a lot of buildbots,
mostly Windows. We'd like help in investigating the issues, but
for now, it should stay out.
llvm-svn: 270433
The exit-on-error flag on the many_args1.ll test is needed to avoid an
unreachable in BPFTargetLowering::LowerCall. We can also avoid it by ignoring
any superfluous arguments to the call (i.e. any arguments after the first 5).
Fixes PR27766
llvm-svn: 270419
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
This required plumbing a TargetRegisterInfo through computeRegisterProperties
and into findRepresentativeClass which uses it for register class
iteration. This required passing a subtarget into a few target specific
initializations of TargetLowering.
llvm-svn: 230583
Summary:
V8->V9:
- cleanup tests
V7->V8:
- addressed feedback from David:
- switched to range-based 'for' loops
- fixed formatting of tests
V6->V7:
- rebased and adjusted AsmPrinter args
- CamelCased .td, fixed formatting, cleaned up names, removed unused patterns
- diffstat: 3 files changed, 203 insertions(+), 227 deletions(-)
V5->V6:
- addressed feedback from Chandler:
- reinstated full verbose standard banner in all files
- fixed variables that were not in CamelCase
- fixed names of #ifdef in header files
- removed redundant braces in if/else chains with single statements
- fixed comments
- removed trailing empty line
- dropped debug annotations from tests
- diffstat of these changes:
46 files changed, 456 insertions(+), 469 deletions(-)
V4->V5:
- fix setLoadExtAction() interface
- clang-formated all where it made sense
V3->V4:
- added CODE_OWNERS entry for BPF backend
V2->V3:
- fix metadata in tests
V1->V2:
- addressed feedback from Tom and Matt
- removed top level change to configure (now everything via 'experimental-backend')
- reworked error reporting via DiagnosticInfo (similar to R600)
- added few more tests
- added cmake build
- added Triple::bpf
- tested on linux and darwin
V1 cover letter:
---------------------
recently linux gained "universal in-kernel virtual machine" which is called
eBPF or extended BPF. The name comes from "Berkeley Packet Filter", since
new instruction set is based on it.
This patch adds a new backend that emits extended BPF instruction set.
The concept and development are covered by the following articles:
http://lwn.net/Articles/599755/http://lwn.net/Articles/575531/http://lwn.net/Articles/603983/http://lwn.net/Articles/606089/http://lwn.net/Articles/612878/
One of use cases: dtrace/systemtap alternative.
bpf syscall manpage:
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/commit/?id=b4fc1a460f3017e958e6a8ea560ea0afd91bf6fe
instruction set description and differences vs classic BPF:
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/filter.txt
Short summary of instruction set:
- 64-bit registers
R0 - return value from in-kernel function, and exit value for BPF program
R1 - R5 - arguments from BPF program to in-kernel function
R6 - R9 - callee saved registers that in-kernel function will preserve
R10 - read-only frame pointer to access stack
- two-operand instructions like +, -, *, mov, load/store
- implicit prologue/epilogue (invisible stack pointer)
- no floating point, no simd
Short history of extended BPF in kernel:
interpreter in 3.15, x64 JIT in 3.16, arm64 JIT, verifier, bpf syscall in 3.18, more to come in the future.
It's a very small and simple backend.
There is no support for global variables, arbitrary function calls, floating point, varargs,
exceptions, indirect jumps, arbitrary pointer arithmetic, alloca, etc.
From C front-end point of view it's very restricted. It's done on purpose, since kernel
rejects all programs that it cannot prove safe. It rejects programs with loops
and with memory accesses via arbitrary pointers. When kernel accepts the program it is
guaranteed that program will terminate and will not crash the kernel.
This patch implements all 'must have' bits. There are several things on TODO list,
so this is not the end of development.
Most of the code is a boiler plate code, copy-pasted from other backends.
Only odd things are lack or < and <= instructions, specialized load_byte intrinsics
and 'compare and goto' as single instruction.
Current instruction set is fixed, but more instructions can be added in the future.
Signed-off-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Subscribers: majnemer, chandlerc, echristo, joerg, pete, rengolin, kristof.beyls, arsenm, t.p.northover, tstellarAMD, aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D6494
llvm-svn: 227008