This implements the target-hooks for ARM64 to enable constant hoisting.
This fixes <rdar://problem/14774662> and <rdar://problem/16381500>.
llvm-svn: 205791
Confusingly, the NEON fmla instructions put the accumulator first but the
scalar versions put it at the end (like the fma lib function & LLVM's
intrinsic).
This should fix PR19345, assuming there's only one issue.
llvm-svn: 205758
When LLVM sees something like (v1iN (vselect v1i1, v1iN, v1iN)) it can
decide that the result is OK (v1i64 is legal on AArch64, for example)
but it still need scalarising because of that v1i1. There was no code
to do this though.
AArch64 and ARM64 have DAG combines to produce efficient code and
prevent that occuring in *most* such situations, but there are edge
cases that they miss. This adds a legalization to cope with that.
llvm-svn: 205626
There were several overlapping problems here, and this solution is
closely inspired by the one adopted in AArch64 in r201381.
Firstly, scalarisation of v1i1 setcc operations simply fails if the
input types are legal. This is fixed in LegalizeVectorTypes.cpp this
time, and allows AArch64 code to be simplified slightly.
Second, vselect with such a setcc feeding into it ends up in
ScalarizeVectorOperand, where it's not handled. I experimented with an
implementation, but found that whatever DAG came out was rather
horrific. I think Hao's DAG combine approach is a good one for
quality, though there are edge cases it won't catch (to be fixed
separately).
Should fix PR19335.
llvm-svn: 205625
The previous patterns directly inserted FMOV or INS instructions into
the DAG for scalar_to_vector & bitconvert patterns. This is horribly
inefficient and can generated lots more GPR <-> FPR register traffic
than necessary.
It's much better to emit instructions the register allocator
understands so it can coalesce the copies when appropriate.
It led to at least one ISelLowering hack to avoid the problems, which
was incorrect for v1i64 (FPR64 has no dsub). It can now be removed
entirely.
This should also fix PR19331.
llvm-svn: 205616
Without this change, the llvm_unreachable kicked in. The code pattern
being spotted is rather non-canonical for 128-bit MLAs, but it can
happen and there's no point in generating sub-optimal code for it just
because it looks odd.
Should fix PR19332.
llvm-svn: 205615
When rematerializing through truncates, the coalescer may produce instructions
with dead defs, but live implicit-defs of subregs:
E.g.
%X1<def,dead> = MOVi64imm 2, %W1<imp-def>; %X1:GPR64, %W1:GPR32
These instructions are live, and their definitions should not be rewritten.
Fixes <rdar://problem/16492408>
llvm-svn: 205565
Weak symbols cannot use the small code model's usual ADRP sequences since the
instruction simply may not be able to encode a value of 0.
This redirects them to use the GOT, which hopefully linkers are able to cope
with even in the static relocation model.
llvm-svn: 205426
Again, coalescing and other optimisations swiftly made the MachineInstrs
consistent again, but when compiled at -O0 a bad INSERT_SUBREGISTER was
produced.
llvm-svn: 205423
The previous attempt was fine with optimisations, but was actually rather
cavalier with its types. When compiled at -O0, it produced invalid COPY
MachineInstrs.
llvm-svn: 205422
This commit updates the stackmap format to version 1 to indicate the
reorganizaion of several fields. This was done in order to align stackmap
entries to their natural alignment and to minimize padding.
Fixes <rdar://problem/16005902>
llvm-svn: 205254
is not a pattern to lower this with clever instructions that zero the
register, so restrict the zero immediate legality special case to f64
and f32 (the only two sizes which fmov seems to directly support). Fixes
backend errors when building code such as libxml.
llvm-svn: 205161
This adds a second implementation of the AArch64 architecture to LLVM,
accessible in parallel via the "arm64" triple. The plan over the
coming weeks & months is to merge the two into a single backend,
during which time thorough code review should naturally occur.
Everything will be easier with the target in-tree though, hence this
commit.
llvm-svn: 205090